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Abstract

We apply the concept of parking functions to functional digraphs of map-
pings by considering the nodes as parking spaces and the directed edges
as one-way streets: Each driver has a preferred parking space and starting
with this node he follows the edges in the graph until he either finds a free
parking space or all reachable parking spaces are occupied. If all drivers
are successful we speak of a parking function for the mapping. We transfer
well-known characterizations of parking functions to mappings. Via ana-
lytic combinatorics techniques we study the total number Mn,m of mapping
parking functions, i.e., the number of pairs (f, s) with f : [n] → [n] an
n-mapping and s ∈ [n]m a parking function for f with m drivers, yielding
exact and asymptotic results. Moreover, we describe the phase change be-
haviour appearing at m = n/2 for Mn,m and relate it to previously studied
combinatorial contexts.

Keywords: Parking functions, mappings, enumeration, phase transition

1. Introduction

Parking functions were originally introduced by Konheim and Weiss [1]
during their studies of the linear probing collision resolution scheme for hash
tables. An illustrative definition can be given as follows: Consider a one-
way street with n parking spaces numbered from 1 to n and a sequence of
m drivers with preferred parking spaces s1, s2, . . . , sm. The drivers arrive
sequentially and each driver k, 1 ≤ k ≤ m, tries to park at his preferred
parking space with address sk ∈ [n], where [n] := {1, 2, . . . , n}. If it is free

Email addresses: marie-louise.lackner@tuwien.ac.at (Marie-Louise Lackner),
alois.panholzer@tuwien.ac.at (Alois Panholzer)

Preprint submitted to Journal of Combinatorial Theory, Series A February 2, 2016



he parks. Otherwise he moves further in the allowed direction until he finds
a free parking space. If there is no such parking space he leaves the street
without parking. A sequence (s1, . . . , sm) ∈ [n]m of addresses such that all
drivers are able to park is then called a parking function. There are exactly
Pn,m = (n+ 1−m) · (n+ 1)m−1 parking functions, for n parking spaces and
0 ≤ m ≤ n drivers [1].

Since their introduction, parking functions have been studied extensively
and connections to various other combinatorial objects such as forests, hy-
perplane arrangements, acyclic functions and non-crossing partitions have
been revealed [2]. Moreover, the notion of parking functions has been gen-
eralized in several ways, yielding, e.g., (a, b)-parking functions [3], bucket
parking functions [4], x-parking functions [5], or G-parking functions [6].

Another natural generalization that has however not been studied yet is
the following: Instead of considering simple one-way streets we allow road
networks that are modelled by arbitrary directed graphs in which there is
always exactly one possibility of moving forward, i.e., graphs in which every
node has out-degree 1. Such graphs are the functional digraphs of mappings:
Given a mapping f : [n] → [n] for some positive integer n, its functional
digraph Gf = (V,E) is defined on the vertices V = [n] and has the edge
set E = {(i, f(i)) : i ∈ [n]}. By considering the vertices as parking spaces
and the edges one-way streets we obtain a natural generalization of parking
functions to mappings. Again, every one of the 0 ≤ m ≤ n drivers has his
preferred parking space sk ∈ [n] for k ∈ [m] in the graph. The drivers arrive
sequentially and each driver tries to park at his preferred parking space with
address sk. If it is empty he will park, otherwise he follows the edges and
parks at the first empty node, if such one exists. Otherwise he cannot park
since he would be caught in an endless loop. A pair (f, s) is then called an
(n,m)-mapping parking function, if f is an n-mapping and s ∈ [n]m is a
sequence of addresses such that all m drivers can park in the graph Gf . In
Figure 1 we give an example of a mapping parking function.

To each (n,m)-mapping parking function (f, s) we associate its output-
function π = π(f,s), with π : [m] → [n], where π(k) is the address of the
parking space in which the k-th driver ends up parking. Of course, π is an
injection and for the particular case m = n a bijection; thus in the latter
case one may speak about the output-permutation π.

Obviously, the concept of mapping parking functions generalizes ordi-
nary parking functions. Every ordinary parking function on [n] can be
identified with a parking function for the chain f that maps i to (i + 1)
for every i ∈ [n− 1] and f(n) = n. Moreover, as a special case of mappings,
we obtain parking functions on Cayley trees, i.e. rooted unordered labelled
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Figure 1: The functional digraph Gf of a 19-mapping f and a sequence s =
(10, 5, 14, 10, 13, 14) of addresses of preferred parking spaces for 6 drivers. All drivers are
successful, thus (Gf , s) yields a (19, 6)-mapping parking function with output-function
π(f,s) defined by the sequence (10, 5, 14, 13, 12, 7) of parking positions of the drivers.

trees. To see this, let us recall the combinatorial structure of functional
digraphs [7]: The weakly connected components are cycles of Cayley trees.
That is, each connected component consists of Cayley trees (with edges ori-
ented towards the root nodes) whose root nodes are connected by directed
edges such that they form a cycle. We call a node j lying on a cycle, i.e.,
for which there exists a k ≥ 1 such that fk(j) = j, a cyclic node. Thus, a
mapping consisting of a single connected component and having only one
cyclic node corresponds to a Cayley tree (where a loop-edge has been added
to the root).

We start our studies of parking functions for mappings and trees by
exhibiting some of their basic properties and characterizations in Section 2.

The main focus of this paper lies on the exact and asymptotic enu-
meration of the total number of (n,m)-mapping parking functions. Let
Mn := {f : [n] → [n]} denote the combinatorial family of n-mappings for
evry n ∈ N. We are interested in the study of both the exact and asymptotic
behaviour of the quantity

Mn,m := |{(f, s) : f ∈Mn, s ∈ [n]m and s a parking function for f}|.

This treatment is divided into two main steps: First, in Section 3 we treat the
important particular case m = n, i.e., we consider parking functions where
the number of drivers is equal to the number of parking spaces. Second,
the general case 0 ≤ m ≤ n is treated in Section 4. In order to get exact
enumeration results we use suitable combinatorial decompositions of the
objects, which give recursive descriptions of the quantities of interest. The
recurrences occurring can be treated by a generating functions approach
yielding partial differential equations. These differential equations allow for
implicit characterizations of the generating functions via the solution of a

3



certain functional equation (conceptually, such a treatment is related to [8]).
Due to the combinatorial structure of functional digraphs, this treatment
will first require the exact enumeration of parking functions for trees and
we therefore introduce the following sequence:

Fn,m := |{(T, s) : T ∈ Tn, s ∈ [n]m and s a parking function for T}|,

where Tn ⊆Mn denotes the family of size-n Cayley trees.
From the exact results for Fn,m and Mn,m it follows somewhat surpris-

ingly that Mn,m = nFn,m, for 1 ≤ m ≤ n, implying that, for fixed size n, the
average number of parking functions per mapping is equal to the average
number of parking function per tree. In Section 3 we construct a bijection
providing a combinatorial explanation of this fact.

Asymptotic results for the case that the number of drivers coincides with
the number of parking spaces can be obtained easily by applying standard
singularity analysis of generating functions [7]. To give a complete picture
of the asymptotic behaviour of Mn,m depending on the growth of m w.r.t.
n requires a more detailed study using saddle point methods. We consider
the probability pn,m := Mn,m/n

n+m that a randomly chosen pair (f, s) of an
n-mapping f and a sequence s of m addresses is indeed a parking function.
For m ∼ n

2 there occurs a phase change behaviour in this probability: If
m
n < 1

2−ε, then there is asymptotically a positive probability that all drivers
can park successfully, whereas for m

n > 1
2 + ε the probability that all drivers

are successful is exponentially small. Qualitatively, the transient behaviour
at m ∼ n

2 is the same as observed previously in other combinatorial contexts,
such as, e.g., in the analysis of random graphs during the phase where a giant
component has not yet emerged. See [9, 10] or [7, Ch. VIII.10.].

In Section 5 we conclude this paper by giving some remarks on open
problems and possible further research directions.

More detailed calculations as well as additional proof details can be found
in the first author’s PhD thesis [11].

2. Basic properties of parking functions for trees and mappings

Given an n-mapping f , we define a binary relation �f on [n] via

i �f j :⇐⇒ ∃k ∈ N : fk(i) = j.

Thus i �f j holds if there exists a directed path from i to j in the functional
digraph Gf , and we say that j is a successor of i or that i is a predecessor
of j. In this context a one-way street represents a total order.

Moreover, we will denote by root(T ) the root of the Cayley tree T .
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2.1. Changing the order in a parking function

In the setting of ordinary parking functions, changing the order in a
sequence does not affect its property of being a parking function or not.
This fact can easily be generalized to parking functions for mappings.

Lemma 2.1. A function s : [m] → [n] is a parking function for a map-
ping f : [n] → [n] if and only if s ◦ σ is a parking function for f for any
permutation σ on [m].

Proof. It is sufficient to prove the result for σ an elementary transposition
(k, k + 1). Parking the (k − 1) first cars is the same for both s and s ◦ σ.
We consider the parking paths of the k-th and the (k + 1)-th car in the
mapping graph, i.e., the sequence of vertices between sk (sk+1) and π(f,s)(k)
(π(f,s)(k+1)). If these two paths are disjoint, the parking spaces of the k-th
and (k + 1)-th car are simply swapped in s ◦ σ. If they are not disjoint,
the k-th car will reach π(f,s)(k) before it reaches π(f,s)(k + 1) and will thus
park there. For the (k + 1)-th car, the first free parking space after sk is
π(f,s)(k+1) and it will park there. In both cases, the k-th and the (k+1)-th
car fill the same vertices πs(k) and πs(k+ 1) so the remaining cars parks at
the same places as in s.

2.2. Alternative characterizations of parking functions

Using the fact that one may reorder parking functions, one obtains the
following well-known simpler characterization of ordinary parking functions
s : [n] → [n] (see, e.g., [2]): A sequence s ∈ [n]n is a parking function if
and only if it is a major function, i.e., the sorted rearrangement s′ of the
sequence s satisfies: s′j ≤ j for all j ∈ [n]. In other words, there must be at
least j elements in s that are not larger than j:

| {k ∈ [n] : sk ≤ j} | ≥ j, for all j ∈ [n]. (1)

This characterization of parking functions can easily be generalized to park-
ing functions for mappings. Indeed, in (1) we merely need to replace the
≤-relation on the integers 1, 2, . . . , n by the binary relation given by the
considered mapping:

Lemma 2.2. Given an n-mapping f and a sequence s ∈ [n]n, let p(j) de-
note the number of predecessors of j, i.e., p(j) := | {i ∈ [n] : i �f j} | and
q(j) denote the number of drivers whose preferred parking spaces are prede-
cessors of j, i.e., q(j) := | {k ∈ [n] : sk �f j} |. Then s is a mapping parking
function for f if and only if

q(j) ≥ p(j), for all j ∈ [n].
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Proof. We denote by P (j) the set of predecessors of j in the mapping f .
At most q(j) cars may park in P (j). Hence, if there exists a j ∈ [n] such

that q(j) < p(j) = |P (j)|, then at least one parking space remains free in
P (j) so s is not a parking function for f .

If at least |P (j)| = p(j) cars have their preferred space in P (j) then at
least one car parks in vertex j: otherwise one would have p(j) cars parked
in p(j)− 1 vertices. Hence, q(j) ≥ p(j) means that a car is parked in vertex
j. If this holds for all j ∈ [n], a car is parked in every vertex of f and s is a
parking function.

Let us turn to parking functions, where the number of drivers does not
necessarily coincide with the number of parking spaces. Equation (1) can
be generalized as follows. A sequence s : [m] → [n] is an ordinary parking
function if and only if

| {k ∈ [m] : sk ≥ j} | ≤ n− j + 1, for all j ∈ [n]. (2)

We show how this can be generalized to mappings that are trees; the case
of mappings in general is analogous but requires some more involved defini-
tions.

Lemma 2.3. Let T be a rooted labelled tree of size |T | = n and s a sequence
in [n]m. Then s is a parking function for T if and only if

|
{
k ∈ [m] : sk ∈ T ′

}
| ≤ |T ′|, for all subtrees T ′ of T containing root(T ).

Note that T ′ is called a subtree of T if T ′ is a subgraph of T that is a
tree itself.

Proof. First, let T ′ be a subtree of T containing root(T ). Then the possible
parking spaces for a driver with sk ∈ T ′ all lie within T ′. Thus, if the number
| {k ∈ [m] : sk ∈ T ′} | of such drivers exceeds the number of spaces |T ′| in T ′
at least one of the drivers will be unsuccessful and s is not a parking function
for T .

Next, let us assume that s is not a parking function for T and that
` ∈ [m] is the first unsuccessful driver. Let T ′ be the maximal subtree of
T containing root(T ) and only such nodes that are occupied by one of the
first ` − 1 cars. Since T ′ is maximal all cars that are parked in T ′ wanted
to park there and we have |{k ∈ [` − 1] : sk ∈ T ′}| = |T ′|. Because the
`-th driver is unsuccessful, his preferred parking space is also in T ′, yielding
|{k ∈ [`] : sk ∈ T ′}| > |T ′|.
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2.3. Extremal cases for the number of parking functions

Given an n-mapping f : [n]→ [n], let us denote by S(f,m) the number
of parking functions s ∈ [n]m for f with m drivers.

Proposition 2.4. Let f and f ′ be two isomorphic n-mappings, i.e., there
exists a bijective function σ : [n]→ [n], such that f ′ = σ ◦ f ◦ σ−1. Then for
0 ≤ m ≤ n it holds that

S(f,m) = S(f ′,m).

Proof sketch. First note that the corresponding functional digraphs Gf =
([n], E) and Gf ′ = ([n], E′) are isomorphic in the graph theoretic sense. It is
then an easy task to show via induction that a function s = (s1, . . . , sm) ∈
[n]m is a parking function for f if and only if s′ := σ ◦s = (σ(s1), . . . , σ(sm))
is a parking function for f ′.

In the following we consider the extremal cases of S(f,m). Obviously,
each injective function s ∈ [n]m is a parking function for every mapping
f ∈Mn, which yields the trivial bounds

nm ≤ S(f,m) ≤ nm, for f ∈Mn.

These bounds are actually tight. Indeed, for the identity idn on [n], we have
S(idn,m) = nm since no collisions may occur. Moreover, for c a cycle of
length n it holds that S(c,m) = nm.

The situation becomes more interesting when we restrict ourselves to
mappings that are trees. Let T be a rooted labelled tree and v a node of T .
Furthermore, let U be a subtree of T attached to v such that T \U is still a

tree. For a node w not contained in U , we denote by reallocate
(
T
∣∣∣ U↓
v
7→ U
↓
w

)

the tree operation of first detaching the subtree U from v and then attaching
it to w. See Figure 2 for an illustration.

Lemma 2.5. Let T be a rooted labelled tree and w a node in T . Furthermore,
let v be a vertex on the path from w to root(T ), U a subtree attached to v

not containing w and T̃ = reallocate
(
T
∣∣∣ U↓
v
7→ U
↓
w

)
. Then it holds that

S(T̃ ,m) ≥ S(T,m).

Proof. By applying Lemma 2.3 we will show that each parking function
s ∈ [n]m for T is also a parking function for T̃ . For this purpose, let s be
a parking function for T and consider a subtree T̃ ′ of T̃ containing the root
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Figure 2: Illustrating the tree operation of reallocating the subtree U from v to w in T
which yields the tree T̃ .

of T̃ . Note that by construction root(T̃ ) = root(T ). We distinguish between

two cases to show that
∣∣∣
{
k ∈ [m] : sk ∈ T̃ ′

}∣∣∣ ≤ |T̃ ′|.
First, if U∩T̃ ′ = ∅ then T̃ ′ is also a subtree of T containing root(T ). Since

s is a parking function for T Lemma 2.3 implies that
∣∣∣
{
k ∈ [m] : sk ∈ T̃ ′

}∣∣∣ ≤
|T̃ ′|.

Second, if U∩T̃ ′ = R 6= ∅ thenR is a subtree of U that is attached to node
w, which is itself a predecessor of v. Within the tree T̃ ′, let us reallocate the

subtree R from w to v. Then the resulting tree T ′ := reallocate
(
T̃ ′
∣∣∣R↓
w
7→ R
↓
v

)

is a subtree of T containing root(T ). According to Lemma 2.3 it holds
that | {k ∈ [m] : sk ∈ T ′} | ≤ |T ′|. Since T ′ and T̃ ′ have equal size and the
nodes in the corresponding trees have the same labels, this also implies that∣∣∣
{
k ∈ [m] : sk ∈ T̃ ′

}∣∣∣ ≤ |T̃ ′|.

With this lemma we can easily obtain tight bounds on S(T,m).

Theorem 2.6. Let starn be the rooted labelled tree of size n with root node
n and all other nodes attached to it. Furthermore let chainn be the tree with
root node n and node j attached to node (j + 1), for 1 ≤ j ≤ n − 1. Then,
for any rooted labelled tree T of size n it holds

S(starn,m) ≤ S(T,m) ≤ S(chainn,m), (3)
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yielding the bounds

nm+

(
m

2

)
(n−1)m−1 ≤ S(T,m) ≤ (n−m+1)(n+1)m−1, for 0 ≤ m ≤ n.

Proof. Each tree T of size n can be constructed from a tree T0, which
is isomorphic to starn, by applying a sequence of reallocations Ti+1 :=

reallocate
(
Ti

∣∣∣
Ui
↓
vi
7→ Ui

↓
wi

)
, with wi �Ti vi, for 0 ≤ i ≤ k, with k ≥ 0. Further-

more, starting with T =: T̃0, there always exists a sequence of reallocations

T̃i+1 := reallocate

(
T̃i

∣∣∣∣
Ũi
↓
ṽi

7→ Ũi
↓
w̃i

)
, with w̃i �T̃i ṽi, for 0 ≤ i ≤ k̃, with k̃ ≥ 0,

such that the resulting tree is isomorphic to chainn. Thus, equation (3)
follows immediately from Lemma 2.5. The upper bound is the well-known
formula for the number ordinary parking functions. Elementary combina-
torics yield the number of parking functions with m drivers for starn.

3. Total number of parking functions: number of drivers coincides
with number of parking spaces

Due to the combinatorial structure of mapping graphs, we start this
section with the study of parking functions for trees. Then we proceed to
connected mappings and finally to the general case.

3.1. Tree parking functions

We study the total number Fn := Fn,n of (n, n)-tree parking functions,
i.e., the number of pairs (T, s), with T ∈ Tn a Cayley tree of size n and
s ∈ [n]n a parking sequence of length n for the tree T , such that all drivers
are successful. To obtain a recursive description of the total number Fn of
tree parking functions we use the decomposition of a Cayley tree T ∈ Tn
w.r.t. the last empty node. We thus consider the situation just before the
last driver starts searching a parking space.

Two different situations might occur: (i) the empty node is the root node
of the tree T , or (ii) the empty node is a non-root node. See Figure 3 for a
schematic representation. In case (i) the last driver will find a free parking
space regardless of the n possible choices of his preferred parking space. In
case (ii) the last driver will only find a free parking space, if his preferred
parking space lies in the subtree T ′′ rooted at the node corresponding to the
free parking space. If we detach the edge linking T ′′ with the rest of the tree
we get a pair of unordered trees; let us assume T ′, the tree containing the
original root of the tree, has size k whereas T ′′ has size n−k. Then there are
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T ′′ of size n− k
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Figure 3: Schematic representation of the two situations that might occur when consider-
ing parking functions with n drivers for a Cayley tree with n nodes. The last empty node
is marked in white.

n−k choices for the preferred parking space of the last driver. Furthermore,
it is important to take into account that, given T ′ and T ′′, the original tree T
cannot be reconstructed, since there are always k different trees in Tn leading
to the same pair (T ′, T ′′). Considering the order-preserving relabellings of
the subtrees and the merging of the parking sequences for the subtrees, we
obtain the following recursive description of Fn.

Fn =
∑

r≥1

1

r!

∑
∑r
i=1

ki=n−1

ki≥1

Fk1 · Fk2 · · · · · Fkr
(

n

k1, k2, . . . , kr, 1

)(
n− 1

k1, k2, . . . , kr

)
n

+
∑

r≥0

1

r!

∑

k+
∑r
i=1

ki=n−1

k≥1,ki≥1

Fk · Fk1 · Fk2 · · · · · Fkr ·

·
(

n

k, k1, k2, . . . , kr, 1

)(
n− 1

k, k1, k2, . . . , kr

)
k(n− k),

for n ≥ 2 with initial value F1 = 1. Here r denotes the number of subtrees of
the empty node and the factor 1

r! occurs since every one of the r! orderings of
the subtrees represents the same tree. Introducing the generating function
F (z) :=

∑
n≥1 Fn

zn

(n!)2
the recurrence relation for Fn can be transferred into

the following differential equation:

F ′(z) = exp(F (z)) ·
(
1 + zF ′(z)

)2
, F (0) = 0. (4)

Solving this differential equation can be done with standard methods and it
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can be checked easily that the solution of (4) is given as follows:

F (z) = T (2z) + ln

(
1− T (2z)

2

)
, (5)

where T (z) :=
∑

n≥1 Tn
zn

n! =
∑

n≥1 n
n−1 zn

n! denotes the tree function, i.e.,

the exponential generating function of the number Tn = nn−1 of Cayley
trees of size n . Recall that it satisfies the functional equation

T (z) = zeT (z) (6)

and is thus related to the so-called Lambert W -function [7].

3.2. Mapping parking functions

Now we turn to the total number Mn := Mn,n of (n, n)-mapping park-
ing functions. We first introduce connected mappings as auxiliary objects
and study parking functions for them; after that the general situation can be
treated easily. An n-mapping f is simply a set of connected mappings whose
respective sizes add up to n. This relation between mappings and connected
mappings can be translated immediately into connections between parking
functions for these objects. However, this is not the case for connected map-
pings and trees. Indeed, the decomposition of connected mappings C into
Cayley trees T is not consistent with the parking procedure. Instead of
using this decomposition, we will therefore apply a decomposition of con-
nected mappings w.r.t. the last empty node in the parking procedure. So,
let us introduce the total number Cn of parking functions of length n for
connected n-mappings.

Three situations may occur: (i) the last empty node is the root node
of the Cayley tree that forms a length-1 cycle, (ii) the last empty node is
the root node of a Cayley tree lying in a cycle of at least two trees, (iii)
the last empty node is not a cyclic node, i.e., it is not one of the root nodes
of the Cayley trees forming the cycle. A schematic representation of these
situations can be found in Figure 4.

To treat these cases only slight adaptions to the considerations made in
Section 3.1 have to be done; case (i) is explained already there. In case
(ii) the last driver will find a free parking space regardless of the n possible
choices of his preferred parking space. Let us denote by T ′′ the tree whose
root node is the last free parking space. When we detach the two edges
linking T ′′ with the rest of the mapping graph, we cut the cycle and the
graph decomposes into a pair of trees: the tree T ′′ and the unordered tree
T ′, which we may consider rooted at the former predecessor of the free
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tree T ′′ of size n− k

connected
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mapping C ′

Figure 4: Schematic representation of two of the three situations that might occur when
considering parking functions with n drivers for a connected n-mapping. The last empty
node is marked in white; the case where it forms the root node of the single tree consti-
tuting the mapping is depicted on the left-hand side of Figure 3.

parking space in the cycle of the original graph. In case (iii) the last driver
will only find a free parking space if his preferred parking space is contained
in T ′′. If we detach the edge linking this subtree T ′′ with the rest of the
graph, a connected mapping graph remains (call it C ′). Taking into account
the order-preserving relabellings of the substructures and also the merging of
the parking sequences for them, we obtain the following recursive description
of Cn, valid for all n ≥ 1:

Cn =
∑

r≥0

1

r!

∑
∑
ki=n−1

Fk1Fk2 · · ·Fkr
(

n

k1, k2, . . . , kr

)(
n− 1

k1, k2, . . . , kr

)
· n (7)

+
∑

r≥0

1

r!

∑

k+
∑
ki=n−1

FkFk1 · · ·Fkr
(

n

k, k1, . . . , kr

)(
n− 1

k, k1, . . . , kr

)
· kn

+
∑

r≥0

1

r!

∑

k+
∑
ki=n−1

CkFk1 · · ·Fkr
(

n

k, k1, . . . , kr

)(
n− 1

k, k1, . . . , kr

)
· k(n− k).

Introducing the generating function C(z) :=
∑

n≥1Cn
zn

(n!)2
, the recurrence (7)

12



yields the following differential equation for C(z),

C ′(z) ·
(
1− z exp(F (z))− z2F ′(z) exp(F (z))

)

=
((

1 + zF ′(z)
)2

+ zF ′(z) + z2F ′′(z)
)

exp(F (z)), C(0) = 0, (8)

where F (z) denotes the generating function of the number of tree parking
functions given in (5). This differential equation has the following simple
solution:

C(z) = ln

(
1

1− T (2z)
2

)
, (9)

as can be checked easily by using the functional equation (6) of the tree
function T (z).

Now we are in the position to study the total number Mn of (n, n)-
mapping parking functions. Again we introduce the generating function
M(z) :=

∑
n≥0Mn

zn

(n!)2
. Since the functional digraph of a mapping can

be considered as the set of its connected components and furthermore a
parking function for a mapping can be considered as a shuffle of the corre-
sponding parking functions for the connected components, we get the fol-
lowing simple relation between the generating functions M(z) and C(z):
M(z) = exp(C(z)). Thus, by using (9), the generating function M(z) is
given as follows:

M(z) =
1

1− T (2z)
2

. (10)

Next, we remark that the following relation between M(z) and F (z), the
generating functions for the number of parking functions for mappings and
trees, holds:

1 + zF ′(z) = 1 +
T (2z)

1− T (2z)
·
(

1− 1

2− T (2z)

)
= 1 +

T (2z)
2

1− T (2z)
2

= M(z).

At the level of coefficients, this immediately shows the following somewhat
surprising connection between Fn and Mn.

Theorem 3.1. For all n ≥ 1 it holds that the total numbers Fn and Mn of
(n, n)-tree parking functions and (n, n)-mapping parking functions, respec-
tively, satisfy:

Mn = n · Fn.

13



Since the number of mappings of size n is exactly n times the number
of Cayley trees of size n, this implies that the average number of parking
functions per mapping of a given size is exactly equal to the average number
of parking functions per tree of the same size. Later, in Section 3.3 we
establish a combinatorial explanation for this interesting fact.

Extracting coefficients from the generating function solution (10) of
M(z) easily yields exact formulæ for Mn.

Theorem 3.2. The total number Mn of (n, n)-mapping parking functions
is for n ≥ 1 given as follows:

Mn = n!(n− 1)! ·
n−1∑

j=0

(n− j) · (2n)j

j!
.

Proof. Using (6) and the Lagrange inversion formula [2], we obtain

[zn]
1

1− T (2z)
2

=
2n

n
[Tn−1]

enT

2
(
1− T

2

)2

=
2n−1

n

n−1∑

k=0

(k + 1)nn−1−k

2k(n− 1− k)!
=

1

n

n−1∑

j=0

(n− j)(2n)j

j!
,

and thus

Mn = (n!)2[zn]M(z) = n!(n− 1)!
n−1∑

j=0

(n− j) · (2n)j

j!
.

The asymptotic behaviour of the numbers Mn can be deduced from the
generating function solution (10) of M(z). Using the well-known asymptotic
expansion of the tree function T (z) in a complex neighbourhood of its unique
dominant singularity 1

e (see [7]),

T (z) = 1−
√

2
√

1− ez +
2

3
(1− ez) +O((1− ez) 3

2 ), (11)

one immediately obtains that M(z) inherits a singularity from T (z) at ρ =
1
2e . This is the unique singularity of M(z), since T (2z) = 2 has no solution.
Its local expansion in a complex neighbourhood of ρ can easily be obtained
as follows:

M(z) =
2

2− T (2z)
=

2

1 +
√

2
√

1− 2ez − 2
3(1− 2ez) +O((1− 2ez)

3
2 )

14



= 2− 2
√

2
√

1− 2ez +
16

3
(1− 2ez) +O((1− 2ez)

3
2 ).

A standard application of singularity analysis of generating functions,
i.e., transfer lemmata [7] which allow to deduce the asymptotic behaviour of
the coefficients from the local behaviour of the generating function around
its dominant singularity, shows the following asymptotic equivalent of the
numbers Mn. We get

[zn]M(z) ∼
√

2√
π

(2e)n

n
3
2

and the following corollary, which follows directly when applying Stirling’s
approximation formula for the factorials [7].

Corollary 3.3. The total number Mn of (n, n)-mapping parking functions
is asymptotically, for n→∞, given as follows:

Mn ∼
√

2π 2n+1n2n

√
n en

.

3.3. Bijective relation between parking functions for trees and mappings

The simple relation between the total number of parking functions for
trees and mappings stated in Theorem 3.1 was proved by algebraic manip-
ulations of the corresponding generating functions. This does not provide
a combinatorial explanation of this fact. However, standard constructions
such as Prüfer codes do not seem to be applicable to this setting. We thus
present a bijective proof of this result in the following.

Theorem 3.4. For each n ≥ 1, there exists a bijection ϕ from the set of
triples (T, s, w), with T ∈ Tn a tree of size n, s ∈ [n]n a parking function for
T with n drivers, and w ∈ T a node of T , to the set of pairs (f, s) where
f ∈ Mn is an n-mapping and s ∈ [n]n is a parking function for f with n
drivers. Thus

n · Fn = Mn, for n ≥ 1.

Note that indeed s remains fixed under the bijection ϕ. The map ϕ is
illustrated in Figure 5 where an example involving a tree of size 8 is given.

Proof. First, we define the rank k(v) of a node v to be π−1(v), where the
output-function π of (T, s) is a bijection since s is a parking function for T
with n drivers. That is, k(v) = i if and only if the i-th car in the parking
sequence ends up parking at node v in T . For an example, see the second
picture in Figure 5. Furthermore, we will denote by T (v) the parent of node

15
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Figure 5: The bijection ϕ described in Theorem 3.4 is applied to the triple (T, s, w)
represented in the top left corner and yields the mapping parking function represented in
the bottom right corner. The labels of the cars denote their ranks; the marked nodes in
the second picture correspond to the right-to-left maxima in the sequence of ranks of the
drivers on the path from w to the root.

v in the tree T . That is, for v 6= root(T ), T (v) is the unique node such that
(v, T (v)) is an edge in T .

Given a triple (T, s, w), we consider the unique path w  root(T ) from
the node w to the root of T . It consists of the nodes v1 = w, v2 =
T (v1), . . . , vi+1 = T (vi), . . . , vr = root(T ) for some r ≥ 1. To this sequence
v1, v2, . . . , vr of nodes in T we associate its sequence of ranks k1, . . . , kr where
ki := k(vi). We denote by I = (i1, . . . , it), with i1 < i2 < · · · < it for some
t ≥ 1, the indices of the right-to-left maxima in this sequence, i.e.,

i ∈ I ⇐⇒ ki > kj , for all j > i.

The corresponding set of nodes in the path w  root(T ) will be denoted by
VI := {vi : i ∈ I}. Of course, if follows from the definition that the root
node is always contained in VI , i.e., vr ∈ VI . Note that the idea of this proof
is inspired by the construction of the fundamental bijection [2] showing that
right-to-left maxima and cycles in permutations are equi-distributed.
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We can now describe the function ϕ by constructing an n-mapping f ,
such that s is a parking function for f . In case v /∈ VI we simply set
f(v) = T (v). If v ∈ VI we have v = vi` for some 1 ≤ ` ≤ t. The crucial
observation is that the edge (vi` , T (vi`)), is never used by any of the drivers
of s. Since ki` is a right-to-left maximum in the sequence k1, . . . , kr, all
nodes that lie on the path from vi` to the root are already occupied when
the ki`-th driver parks at vi` . Thus, no driver before ki` (then he would have
parked at vi`) nor after ki` (then he would not be able to park anywhere)
could have reached and thus left the node vi` . We may thus delete this edge
and attach the node vi` to an arbitrary node without violating the property
that s is a parking function. Since we want to be able to reconstruct T from
f we will do this in the following way: f(vi`) := T

(
vi`−1

)
, where we set

T (vi0) = v1 = w. This means that the nodes on the path w  root(T ) in T
form t cycles C1 := (v1, . . . , vi1), . . . , Ct := (T (vit−1), . . . , vr = vit) in Gf .

Having defined the mapping f in this way, the sequence s is also a parking
function for f and it holds that the parking paths of the drivers coincide for
T and f . In particular, it holds that π(f,s) = π(T,s).

Moreover, it is easy to describe the inverse function ϕ−1. Given a pair
(f, s), we start by computing the rank of every node in Gf . Then we sort
the connected components of Gf in decreasing order of their cyclic elements
with highest rank. That is, if Gf consists of t connected components and ci
denotes the cyclic element in the i-th component with highest rank, we have
k(c1) > k(c2) > . . . > k(ct). Then, for every 1 ≤ i ≤ t, we remove the edges
(ci, di) where di = f(ci). Next we reattach the components to each other by
establishing the edges (ci, di+1) for every 1 ≤ i ≤ t − 1. This leads to the
tree T . Note that the node ct is attached nowhere since it constitutes the
root of T . Setting w = d1, we obtain the preimage (T, s, w) of (f, s).

4. Total number of parking functions: the general case

In this section we study the exact and asymptotic behaviour of the total
number of mapping parking functions for the general case of n parking spaces
and 0 ≤ m ≤ n drivers. In what follows we use m̃ := n−m, i.e., m̃ denotes
the number of empty parking spaces in the mapping graph after all m drivers
have parked. Again, we start with the number of parking functions for trees.

4.1. Tree parking functions

In the following, we use the notation F̃n,m̃ := Fn,n−m̃, thus F̃n,0 = Fn.
Let us assume that 1 ≤ m̃ ≤ n. To get a recursive description for the
numbers F̃n,m̃, we use the combinatorial decomposition of a Cayley tree
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T ∈ Tn w.r.t. the free node which has the largest label amongst all m̃ empty
nodes in the tree.

Again, the two situations depicted in Figure 3 have to be considered.
The argument given in Section 3.1 for the case m̃ = 0 can be adapted easily:
in case (i), the root node is the empty node with largest label and we assume
that the r subtrees of the root are of sizes k1, . . . , kr and contain `1, . . . , `r
empty nodes, respectively. In case (ii), a non-root node is the empty node
with largest label. We denote by T ′′ the subtree of T rooted at this empty
node. After detaching T ′′ from the remaining tree we obtain a tree T ′ that
is of size k and has ` empty nodes for some 1 ≤ k ≤ n−1 and 0 ≤ ` ≤ m̃−1.
Furthermore, we assume that the r subtrees of the root of T ′′ are of sizes
k1, . . . , kr and contain `1, . . . , `r empty nodes, respectively. In the latter case
one has to take into account that there are k possibilities of attaching the
root of T ′′ to one of the k nodes in T ′ yielding the same decomposition. The
following recursive description of the numbers F̃n,m̃ follows by considering
the order-preserving relabellings of the subtrees and also the merging of the
parking sequences for the subtrees. Moreover, one uses the simple fact that,
when fixing an empty node v and considering all possible labellings of the
m̃ empty nodes, only a fraction of 1

m̃ of all labellings leads to v having the
largest label amongst all empty nodes.

We then get the following recurrence

F̃n,m̃ =
1

m̃

∑

r≥0

1

r!

∑

k1+···+kr=n−1

∑

`1+···+`r=m̃−1

F̃k1,`1 · F̃k2,`2 · · · F̃kr,`r ·

·
(

n

k1, k2, . . . , kr

)(
n− m̃

k1 − `1, k2 − `2, . . . , kr − `r

)
(12)

+
1

m̃

∑

r≥0

1

r!

∑

k+k1+···+kr=n−1

·
∑

`+`1+···+`r=m̃−1

F̃k,`F̃k1,`1 · · · F̃kr,`r ·

·
(

n

k, k1, . . . , kr

)(
n− m̃

k − `, k1 − `1, . . . , kr − `r

)
· k, for 1 ≤ m̃ ≤ n,

with initial values F̃n,0 = Fn. We introduce the generating function

F̃ (z, u) :=
∑

n≥1

∑

m̃≥0

F̃n,m̃
znum̃

n!(n− m̃)!
=
∑

n≥1

∑

0≤m≤n
Fn,n−m

znun−m

n!m!
. (13)

The recurrence relation (12) then yields, after straightforward computations,
the following partial differential equation for F̃ (z, u):

F̃u(z, u) = z2F̃z(z, u) exp(F̃ (z, u)) + z exp(F̃ (z, u)), (14)
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with initial condition F̃ (z, 0) = F (z) and F (z) =
∑

n≥1 Fn
zn

(n!)2
given by (5).

A suitable representation of the solution of this PDE as given next is crucial
for further studies.

Proposition 4.1. The generating function F̃ (z, u) defined in (13) is given
by

F̃ (z, u) = Q · (2 + u(1−Q)) + ln (1−Q) = ln

(
Q(1−Q)

z

)
,

where the function Q = Q(z, u) is given implicitly as the solution of the
functional equation

Q = z · eQ·(2+u(1−Q)). (15)

The solution of the PDE in (14) can be found using the “method of
characteristics” [12]; these steps are detailed in the first author’s thesis [11].
Checking that the above function is indeed a solution can be done easily.

4.2. Mapping parking functions

As pointed out in Section 3.2, it suffices to provide the relevant consid-
erations for the subfamily Cn of connected n-mappings, since results for the
general situation can then be deduced easily. Thus, let us introduce the total
number Cn,m of parking functions of length m for connected n-mappings.

Let us consider parking functions for connected mappings for the case
that m̃ = n − m parking spaces remain free after all drivers have parked
successfully. We define C̃n,m̃ := Cn,n−m̃. In order to obtain a recursive de-
scription of the numbers C̃n,m̃ we again use the combinatorial decomposition
of a connected mapping f ∈ Cn w.r.t. the free node which has the largest
label amongst all m̃ empty nodes in the mapping graph.

As for the case m̃ = 0, three situations may occur when using this
decomposition: (i) the empty node with largest label is the root node of the
Cayley tree which forms a length-1 cycle, (ii) the empty node with largest
label is the root node of a Cayley tree forming a cycle of at least two trees
and (iii) the empty node with largest label is not a cyclic node. Analogous
considerations to the ones given for tree parking functions in Section 4.1 lead
to the following recursive description of the number of parking functions for
connected mappings for 1 ≤ m̃ ≤ n:

C̃n,m̃ =
1

m̃

∑

r≥0

1

r!

∑

k1+···+kr=n−1

∑

`1+···+`r=m̃−1

F̃k1,`1 · F̃k2,`2 · · · F̃kr,`r ·

·
(

n

k1, k2, . . . , kr

)(
n− m̃

k1 − `1, k2 − `2, . . . , kr − `r

)
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+
1

m̃

∑

r≥0

1

r!

∑

k+k1+···+kr=n−1

∑

`+`1+···+`r=m̃−1

F̃k,`F̃k1,`1 · · · F̃kr,`r · (16)

·
(

n

k, k1, . . . , kr

)(
n− m̃

k − `, k1 − `1, . . . , kr − `r

)
· k

+
1

m̃

∑

r≥0

1

r!

∑

k+k1+···+kr=n−1

∑

`+`1+···+`r=m̃−1

C̃k,`F̃k1,`1 · · · F̃kr,`r ·

·
(

n

k, k1, . . . , kr

)(
n− m̃

k − `, k1 − `1, . . . , kr − `r

)
· k,

with initial values C̃n,0 = Cn. When introducing the generating function

C̃(z, u) :=
∑

n≥1

∑

m̃≥0

C̃n,m̃
znum̃

n!(n− m̃)!
, (17)

recurrence (16) yields the following first order linear partial differential equa-
tion for the function C̃(z, u):

C̃u(z, u) = z2C̃z(z, u) exp(F̃ ) + z exp(F̃ ) + z2F̃z exp(F̃ ), (18)

with F̃ = F̃ (z, u) the corresponding generating function for the number
of tree parking functions given in Proposition 4.1, and initial condition
C̃(z, 0) = C(z), with C(z) =

∑
n≥1Cn

zn

(n!)2
given by (9).

Proposition 4.2. The generating function C̃(z, u) defined in (17) is given
as follows:

C̃(z, u) = ln

(
1

(1−Q)(1− uQ)

)
,

where the function Q = Q(z, u) is given implicitly as the solution of the
functional equation (15).

Proof sketch. First, one shows that the function Q(z, u) defined by equa-

tion (15) fulfils Qu(z, u) = z2Qz(z, u)eF̃ (z,u), i.e., Q(z, u) solves the reduced
PDE corresponding to (18). This suggests the substitution z = z(Q) :=
Q/eQ(2+u(1−Q)) and we introduce

Ĉ(Q, u) := C̃(z(Q), u) = C̃

(
Q

eQ(2+u(1−Q))
, u

)
.

Equation (18) then reads as Ĉu(Q, u) = Q
1−uQ . After back-substitution, the

general solution of this equation is given by

C̃(z, u) = ln

(
1

1− uQ(z, u)

)
+ h̃(Q(z, u)),
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with an arbitrary differentiable function h̃(x). This function can be char-
acterized by evaluating C̃(z, u) at u = 0 and using the initial condition
C̃(z, u) = C(z).

We are now able to treat the total number Mn,m of (n,m)-mapping park-
ing functions. We introduce M̃n,m̃ := Mn,n−m̃ and the generating function

M̃(z, u) :=
∑

n≥0

∑

m̃≥0

M̃n,m̃
znum̃

n!(n− m̃)!
. (19)

The decomposition of mapping parking functions into parking functions
for their connected components immediately gives the relation M̃(z, u) =

exp
(
C̃(z, u)

)
. According to Proposition 4.2 we obtain the following solution

of M̃(z, u).

Proposition 4.3. The generating function M̃(z, u) defined in (19) is given
as follows:

M̃(z, u) =
1

(1−Q)(1− uQ)
,

where the function Q = Q(z, u) is defined implicitly by the functional equa-
tion (15).

Using the representations of the generating functions F̃ (z, u) and M̃(z, u)
for the number of tree and mapping parking functions given in Proposition
4.1 and 4.3, respectively, it can be shown easily how they are connected with
each other. We obtain:

1 + zF̃z(z, u) = 1 + z

(
1− 2Q

Q(1−Q)
Qz −

1

z

)
=

1− 2Q

Q(1−Q)

Q

(1− 2Q)(1− uQ)

=
1

(1−Q)(1− uQ)
= M̃(z, u).

Thus, at the level of their coefficients, we obtain the following simple relation
between the total number of tree and mapping parking functions extending
Theorem 3.1.

Theorem 4.4. For all n ≥ 1 it holds that the total numbers Fn,m and
Mn,m of (n,m)-tree parking functions and (n,m)-mapping parking functions,
respectively, satisfy:

Mn,m = n · Fn,m.
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This fact can be explained by extending the bijection presented in The-
orem 3.4 to the general case m ≤ n. This can be done as follows: Given a
tree parking function (T, s) it is extended to a (n, n)-parking function s̃ for
T in such a way that the last (n−m) drivers all have their preferred parking
spaces in those nodes that remained empty under s. Then the bijection φ is
applied in order to obtain a (n, n) mapping parking function. Finally this
mapping parking function is reduced to the first m drivers.

Using Proposition 4.3, extracting coefficients leads to the following ex-
plicit formulæ for the numbers Mn,m. Note that specializing m = n restates
Theorem 3.2.

Theorem 4.5. The total number Mn,m of (n,m)-mapping parking functions
is, for 0 ≤ m ≤ n and n ≥ 1, given as follows:

Mn,m =
(n− 1)!m!nn−m

(n−m)!

m∑

j=0

(
2m− n− j
m− j

)
(2n)j(n− j)

j!
.

Proof. In view of the representation of M̃(z, u) given in Proposition 4.3
containing the function Q = Q(z, u), we make a change of variables in order
to extract coefficients. Using the functional equation (15) and computing
the derivative of Q w.r.t. z, an application of the Cauchy integral formula
gives

[zn]M̃(z, u) =
1

2πi

∮
M̃(z, u)

zn+1
dz =

1

2πi

∮
1

zn+1

1

(1−Q)(1− uQ)
dz

=
1

2πi

∮
e(uQ(1−Q)+2Q)(n+1)

(1−Q)(1− uQ)Qn+1

(1− 2Q)(1− uQ)

euQ(1−Q)+2Q
dQ

= [Qn]
en(uQ(1−Q))e2nQ(1− 2Q)

1−Q .

Further, for 0 ≤ m ≤ n,

[znun−m]M̃(z, u) =
nn−m

(n−m)!
[Qm](1−Q)n−m−1e2nQ(1− 2Q). (20)

Using the negative generalization of binomial coefficients
(−n
k

)
= (−1)k

(
n−k−1

k

)
,

we get

Mn,m = n!m![znun−m]M̃(z, u) =
n!m!nn−m

(n−m)!
[Qm](1−Q)n−m−1e2nQ(1− 2Q)
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=
n!m!nn−m

(n−m)!

m∑

j=0

(
n−m− 1

j

)
(−1)j [Qm−j ]e2nQ(1− 2Q) (21)

=
n!m!nn−m

(n−m)!

m∑

j=0

(
n−m− 1

j

)
(−1)j

2(n−m+ j)(2n)m−j−1

(m− j)!

=
(n− 1)!m!nn−m

(n−m)!

m∑

j=0

(
2m− n− j
m− j

)
(n− j) (2n)j

j!
.

4.3. Asymptotic considerations

The following question is of particular interest to us: How does the
probability pn,m := Mn,m/n

n+m that a randomly chosen sequence of length
m on the set [n] is a parking function for a randomly chosen n-mapping
swap from being equal to 1 (which is the case for m = 1) to being close to
0 (which is the case for m = n) when the ratio ρ := m/n increases?

In order to get asymptotic results for Mn,m we start with the represen-
tation (21), which can be written as

Mn,m =
n!m!nn−m

(n−m)!
An,m, (22)

with

An,m = [wm](1− 2w)e2nw(1− w)n−m (23)

=
1

2πi

∫

Γ

(1− 2w)e2nw(1− w)n−m−1

wm+1
dw =

1

2πi

∫

Γ

g(w)enh(w)dw,

where we choose as contour a suitable simple positively oriented closed curve
around the origin. The functions g(w) and h(w) are given as follows

g(w) :=
1− 2w

(1− w)w
and h(w) := 2w +

(
1− m

n

)
log(1− w)− m

n
logw.

We will use the integral representation (23) of An,m and apply saddle
point techniques (see, e.g., [13, 7] for instructive expositions of this method).
In the terminology of [7] the integral (23) has the form of a “large power
integral” and saddle points of the relevant part enh(w) of the integrand can
thus be found as the zeros of the derivative h′(w). The resulting equation

h′(w) = 2−
(

1− m

n

) 1

1− w −
m

n

1

w
= 0
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yields two solutions: w1 = m
n and w2 = 1

2 . In our asymptotic analysis we
will have to distinguish whether w1 < w2, w1 > w2 or w1 = w2. Our results
can be summed up in the following theorem.

Theorem 4.6. The total number Mn,m of (n,m)-mapping parking functions
is asymptotically, for n→∞, given as follows (where δ denotes an arbitrary
small, but fixed, constant):

Mn,m ∼





nn+m+1
2
√
n−2m

n−m , for 1 ≤ m ≤ (1
2 − δ)n,√

2 3
1
6 Γ( 2

3
)n

3n
2 −

1
6√

π
, for m = n

2 ,

m!
(n−m)! · n

2n−m+3
2 22m−n+1

(2m−n)
5
2

, for (1
2 + δ)n ≤ m ≤ n.

The transient behaviour of the sequence Mn,m for m ∼ n
2 could be de-

scribed via Airy functions as illustrated in [9].
Let us fix the ratio ρ = m/n. This ratio can be interpreted as a “load

factor”–a term used in open addressing hashing. Then the asymptotic be-
haviour of the probabilities pn,m = pn,ρn follows immediately.

Corollary 4.7. The probability pn,m that a randomly chosen pair (f, s), with
f an n-mapping and s a sequence in [n]m, represents a parking function is
asymptotically, for n → ∞ and m = ρn with 0 < ρ < 1 fixed, given as
follows:

pn,m ∼





C<(ρ), for 0 < ρ < 1
2 ,

C1/2 · n−1/6, for ρ = 1/2,

C>(ρ) · n−1 · (D>(ρ))n, for 1/2 < ρ < 1,

with

C<(ρ) =

√
1− 2ρ

1− ρ , C1/2 =

√
6

π

Γ(2/3)

31/3
≈ 1.298 . . . ,

C>(ρ) = 2 ·
√

ρ

(1− ρ)(2ρ− 1)5
, D>(ρ) =

(
4ρ

e2

)ρ e

2(1− ρ)1−ρ .

From Corollary 4.7 it follows that the limiting probability L(ρ) that all
drivers can park successfully for a load factor ρ, as depicted on the left-hand
side in Figure 6, is given as follows :

L(ρ) := lim
n→∞

pn,ρn =

{√
1−2ρ
1−ρ , for 0 ≤ ρ ≤ 1

2 ,

0, for 1
2 ≤ ρ ≤ 1.
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Figure 6: To the left: The limiting probability L(ρ) that all drivers are able to park
successfully in a mapping, for a load factor 0 ≤ ρ ≤ 1. To the right: The exact probabilities
pn,ρn for n = 20, 50, 200, 500, 1000, 5000.

4.3.1. The region ρ ≤ 1
2 − δ

The geometry of the modulus of the integrand of (23) is easily described.
There is a simple dominant saddle point at w = w1, with one steepest
descent/steepest ascent line following the real axis and another parallel to
the imaginary axis. In Equation (23) we choose the contour Γ to be a circle
centered at the origin and passing through the dominant saddle point w1,
i.e., it has radius r = ρ.

Using the parametrization Γ = {w = ρeiφ : φ ∈ [−π, π]}, we obtain from
(23) the representation

An,m =
1

2π

∫ π

−π
ρeiφg(ρeiφ)enh(ρeiφ)dφ. (24)

Next we want to find a suitable splitting of the integral into the central
approximation which should capture the main contribution of the integral
and the remainder. That is, we need to choose a proper value φ0 = φ0(n,m)
to write the contour as Γ = Γ1 ∪ Γ2, with Γ1 := {w = ρeiφ : φ ∈ [−φ0, φ0]}
and Γ2 := {w = ρeiφ : φ ∈ [−π,−φ0] ∪ [φ0, π]} yielding the representation

An,m = I
(1)
n,m + I

(2)
n,m, such that I

(2)
n,m = o

(
I

(1)
n,m

)
, where I

(1)
n,m is the integral

over Γ1 and I
(2)
n,m the one over Γ2. To do this we consider the local expansion

of the integral around φ = 0:

ρeiφg(ρeiφ) =
1− 2m

n e
iφ

1− m
n e

iφ
=

1− 2m
n

1− m
n

·
(

1 +O
(
mφ

n

))
,
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nh(ρeiφ) =n

(
2m

n
eiφ +

(
1− m

n

)
log
(

1− m

n
eiφ
)
− m

n
log
(m
n
eiφ
))

=2m+ (n−m) log
(

1− m

n

)
−m log

(m
n

)

− m(n− 2m)

2(n−m)
φ2 +O(mφ3),

yielding

ρeiφg(ρeiφ)enh(ρeiφ) =

(
1− 2m

n

)( n
m

)m
e2m

(
1− m

n

)n−m−1
e
−
(
m(n−2m)
2(n−m)

)
φ2 ·

·
(

1 +O
(
mφ3

)
+O

(
mφ

n

))
.

From the latter expansion we obtain that we need to choose φ0 such that
mφ2

0 →∞ (then the central approximation contains the main contributions)
and mφ3

0 → 0 (then the remainder term is asymptotically negligible). E.g.,

we may choose φ0 = m−
1
2

+ ε
3 , for a constant 0 < ε < 1

2 . With such a choice
of φ0 and the substitution φ = t√

m
we obtain the following asymptotic

expansion for I
(1)
n,m:

I(1)
n,m =

e2m

2π

(
1− 2m

n

)( n
m

)m (
1− m

n

)n−m−1 1√
m
·
∫ m

ε
3

−m ε
3

e
−
(
n−2m
2(n−m)

)
t2
dt·

·
(

1 +O
(
m−

1
2

+ε
))

.

For the tail completion we use that
∫∞
c e−αt

2
dt = O

(
e−αc

2
)

, for c > 0 and

α > 0. Thus we obtain
∫ ∞

m
ε
3

e
−
(
n−2m
2(n−m)

)
t2
dt = O

(
e
−
(
n−2m
2(n−m)

)
m

2ε
3

)
,

which yields a subexponentially small and thus negligible error term. Using

this, we may proceed in the asymptotic evaluation of I
(1)
n,m and get

I(1)
n,m =

e2m

2π
√
m

(
1− 2m

n

)( n
m

)m (
1− m

n

)n−m−1

·
∫ ∞

−∞
e
−
(
n−2m
2(n−m)

)
t2
dt ·

(
1 +O

(
m−

1
2

+ε
))

=
e2m(n−m)n−m−

1
2
√
n− 2m

√
2πmm+ 1

2nn−2m
·
(

1 +O
(
m−

1
2

+ε
))

.
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Next we consider the remainder integral I
(2)
n,m. To estimate the integrand

we use the obvious bounds
∣∣∣∣1−

2m

n
eiφ
∣∣∣∣ ≤ 1 +

2m

n
and

1∣∣1− m
n e

iφ
∣∣ ≤

1

1− m
n

,

as well as the following:
∣∣∣en(2m

n
eiφ+(1−m

n
) log(1−m

n
eiφ)−m

n
log(m

n
)−m

n
iφ)
∣∣∣

=
( n
m

)m
en(2ρ cosφ+ 1−ρ

2
log(1−2ρ cosφ+ρ2)).

This yields

∣∣∣I(2)
n,m

∣∣∣ ≤ 1

2π

(1− 2m
n )(1 + 2m

n )

1− m
n

·
( n
m

)m
·
∫

Γ2

en(2ρ cosφ+ 1−ρ
2

log(1−2ρ cosφ+ρ2))dφ.

Using standard calculus it can be showed that amongst all points of the
contour Γ2 the integrand reaches its maximum at φ = φ0. Thus, we obtain

∣∣∣I(2)
n,m

∣∣∣ ≤
(1− 2m

n )(1 + 2m
n )

1− m
n

·
( n
m

)m
· e2m cosφ0+n−m

2
log(1− 2m

n
cosφ0+(m

n
)2)

≤2 ·
( n
m

)m
· e2m cosφ0+n−m

2
log(1− 2m

n
cosφ0+(m

n
)2)

=2
( n
m

)m
e2m

(
1− m

n

)n−m
· e

2m(cosφ0−1)+n−m
2

log

(
1−

2m
n (cosφ0−1)

(1−mn )2

)
.

Using the estimates log(1− x) ≤ −x for x < 1 and cosx− 1 ≤ −x2

6 for
x ∈ [−π, π] we obtain that:

e
2m(cosφ0−1)+n−m

2
log

(
1−

2m
n (cosφ0−1)

(1−mn )2

)
≤ e
− 1

6

(
2− 1

1−mn

)
m

2ε
3

.

Thus we obtain

|I(2)
n,m| = |I(1)

n,m| · O
(√

me−cm
2ε
3

)
, with c =

1

6

(
2− 1

1− m
n

)
,

i.e., I
(2)
n,m is subexponentially small compared to I

(1)
n,m.

Combining these results we get

An,m =
(n−m)n−m−

1
2
√
n− 2me2m

√
2πmm+ 1

2nn−2m
·
(

1 +O
(
m−

1
2

+ε
))
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and, by using (22) and applying Stirling’s formula,

Mn,m =
n!m!nn−m(n−m)n−m−

1
2
√
n− 2me2m

√
2π (n−m)!mm+ 1

2nn−2m
·
(

1 +O
(
m−

1
2

+ε
))

=
nn+m

√
1− 2m

n

1− m
n

·
(

1 +O
(
m−

1
2

+ε
))

. (25)

Note that according to the remainder term in (25) we have only shown
the required result for m → ∞. However, again starting with (24), we can
easily show a refined bound on the error term for small m. Namely, we may
write the integral as follows:

An,m =
1

2π

( n
m

)m
·
∫ π

−π

e2meiφ(1− m
n e

iφ)n−m−1(1− 2m
n e

iφ)

eimφ
dφ,

and use for m = o(
√
n) the expansions

(
1− m

n
eiφ
)n−m−1

= e−me
iφ ·
(

1 +O
(
m2

n

))
, 1− 2m

n
eiφ = 1 +O

(m
n

)
,

which gives

An,m =
1

2π

( n
m

)m
·
∫ π

−π

eme
iφ

eimφ
dφ ·

(
1 +O

(
m2

n

))
.

4.3.2. The region ρ ≥ 1
2 + δ

This region can be treated analogously to the previous one by choosing
the contour Γ in (23) to be a circle centered at the origin and with radius
r = 1

2 . The contour may again be split into two parts, Γ = Γ1∪Γ2, with Γ1 =
{w = 1

2e
iφ : φ ∈ [−φ0, φ0]} and Γ2 = {w = 1

2e
iφ : φ ∈ [−π,−φ0] ∪ [φ0, π]}

and where φ0 = n−
1
2

+ε, with 0 < ε < 1
6 . The further calculations and

asymptotic estimations are not detailed here.

4.3.3. The monkey saddle for ρ = 1/2

For ρ = m
n = 1

2 , the situation is slightly different to the previous regions
since the two otherwise distinct saddle points coalesce to a unique double
saddle point. The difference in the geometry of the surface is that there are
now three steepest descent lines and three steepest ascent lines departing
from the saddle point at angles 0, 2π/3 and −2π/3.

Thus, we may choose as integration contour two line segments joining
the point w = 1

2 with the imaginary axis at an angle of −2π/3 and 2π/3,
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respectively, as well as a half circle centered at the origin and joining the two

line segments. This yields Γ = Γ1 ∪ Γ2 ∪ Γ3 and An,m = I
(1)
n,m + I

(2)
n,m + I

(3)
n,m

for the corresponding integrals. We first treat

I(1)
n,m = −e

− 2πi
3

2πi

∫ 1

0
g

(
1

2
+ e−

2πi
3 t

)
e
nh
(

1
2

+e−
2πi
3 t
)
dt.

In order to find a suitable choice t0 for splitting the integral we consider the
expansion of the integrand around t = 0:

g

(
1

2
+ e−

2πi
3 t

)
e
nh
(

1
2

+e−
2πi
3 t
)

=− 8ene−
2πi
3 te−

8
3
nt3 ·

(
1 +O(t2) +O(nt5)

)
.

Thus we obtain the restrictions nt30 → ∞ and nt50 → 0 which are, e.g.,

satisfied when choosing t0 = n−
1
4 . This splitting yields I

(1)
n,m = I

(1,1)
n,m + I

(1,2)
n,m ,

for the integration paths t ∈ [0, t0] and t ∈ [t0, 1], respectively.
Using the local expansion of the integrand as well as the before-mentioned

choice for t0, the central approximation I
(1,1)
n,m gives

I(1,1)
n,m =

4ene−
4πi
3

πi

∫ ∞

0
te−

8
3
nt3dt ·

(
1 +O(n−

1
4 )
)
,

since one can show easily that completing the integral only yields a subex-

ponentially small error term. Moreover, also the remainder I
(1,2)
n,m only yields

a subexponentially small error term compared to I
(1,1)
n,m . The integral I

(2)
n,m

can be treated in an analogous manner:

I(2)
n,m = −4ene

4πi
3

πi

∫ ∞

0
te−

8
3
nt3dt ·

(
1 +O(n−

1
4 )
)
.

Moreover, one can show that the contribution of

I(3)
n,m =

1

2πi

∫ 3π
2

π
2

√
3

2
ieitg

(√
3

2
eit

)
e
nh
(√

3
2
eit
)
dt

is asymptotically negligible compared to I
(1)
n,m and I

(2)
n,m.

Collecting the contributions and evaluating the integral yields

An,m ∼
4en

πi

(
e−

4πi
3 − e 4πi

3

)
·
∫ ∞

0
te−

8
3
nt3dt =

4
√

3 en

π

Γ(2
3)

4 3
√

3n2/3
,

and thus by using (22):

Mn,m ∼
√

2 3
1
6 Γ(2

3)n
3n
2

√
π n

1
6

.

29



5. Conclusion

This paper constitutes the first treatment of parking functions for map-
pings. Let us mention some possible further research directions.

1. Given a mapping f or a tree T , we obtained general, but simple bounds
for the number of tree and mapping parking functions S(f,m) and
S(T,m). For some simple classes of trees, e.g., for “chain-like” trees
with only few branchings it is possible to obtain explicit formulæ. Is
it possible in general to give some “simple characterization” of the
numbers S(f,m) and S(T,m)?

2. Let us denote by Xn the random variable measuring the number of
parking functions s with n drivers for a randomly chosen n-mapping.
Then, by Corollary 3.3, the expected value of Xn is given by E(Xn) =

Mn/n
n ∼

√
2π 2n+1nn−

1
2 e−n. However, with the approach presented

here, it seems that we are not able to obtain higher moments or other
results on the distribution of Xn.

3. As for ordinary parking functions one could analyse important quan-
tities for mapping parking functions. For instance the so-called “total
displacement” (which is of particular interest in problems related to
hashing algorithms, see [14, 15]), i.e., the total driving distance of the
drivers, or “individual displacements” (the driving distance of the k-th
driver, see [16, 17]) seem to lead to interesting questions. Moreover,
the “sums of parking functions” as studied in [18] could be worthwhile
treating as well.

4. A refinement of parking functions can be obtained by studying what
has been called “defective parking functions” in [19], or “overflow”
in [20], i.e., pairs (f, s), such that exactly k drivers are unsuccessful.
Preliminary studies indicate that the approach presented is suitable
to obtain results in this direction as well.

5. Besides Cayley trees which are a special case of mappings, one could
also study the total number of parking functions for other important
tree families as, e.g., labelled binary trees, labelled ordered trees or for
increasing tree families (the labels along all leaf-to-root-paths form an
increasing sequence, see, e.g., [21, 22]).
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