Fundamentals of Mathematics I VO B01.05

Dr. Marie-Louise Bruner

Institute of Discrete Mathematics and Geometry
Vienna University of Technology, Austria
http://dmg.tuwien.ac.at/mbruner/
Lecture given at

KARL M, LANDSTEINER

PRIVATUNIVERSITÄT FÜR
GESUNDHEITSWISSENSCHAFTEN
ERRICHTUNGSGESELLSCHAFT M. B. H.

WS 2015/2016

Content

(1) Sets and numbers
(2) Functions
(3) Differential calculus
(4) Integral calculus
(5) Vectors and matrices

Outline

(1) Sets and numbers

Simple definition
Elements and subsets
Union, intersection and complement Special number sets

Defintion

A set is a well defined collection of distinct objects. The objects that make up a set are called elements or members.

Defintion

A set is a well defined collection of distinct objects. The objects that make up a set are called elements or members.

- The elements can be anything: numbers, people, letters of the alphabet, other sets, and so on.
- There are two ways of defining a set:
- by describing its elements; e.g. M is the set of all inhabitants of Krems
- by listing the elements; e.g. $M:=\{1,2,3,4\}$
- There is no order on the elements of a set; e.g. $\{1,2,3,4\}=\{2,1,4,3\}$
- The set that contains no elements is called the empty set and is denoted by \emptyset.
- Two sets are the same if they contain the same elements.

Notation

We write $x \in M$ if x is an element of M and $x \notin M$ if x is not an element of M.

Example: $4 \in\{1,2,3,4\}$ but $5 \notin\{1,2,3,4\}$
\square Be careful to make the difference between elements and subsets!

Notation

We write $x \in M$ if x is an element of M and $x \notin M$ if x is not an element of M.

Example: $4 \in\{1,2,3,4\}$ but $5 \notin\{1,2,3,4\}$

Definition

If every element of set A is also an element of set B, then A is said to be a subset of B, written $A \subseteq B$. One also says " A is contained in $B^{\prime \prime}$.

Be careful to make the difference between elements and subsets

Notation

We write $x \in M$ if x is an element of M and $x \notin M$ if x is not an element of M.

Example: $4 \in\{1,2,3,4\}$ but $5 \notin\{1,2,3,4\}$

Definition

If every element of set A is also an element of set B, then A is said to be a subset of B, written $A \subseteq B$. One also says " A is contained in $B^{\prime \prime}$.

Be careful to make the difference between elements and subsets!

Examples:

- $\{4\} \subseteq\{1,2,3,4\}$ whereas $4 \subseteq\{1,2,3,4\}$ does not make sense.
- For every set M it holds that $\emptyset \subseteq M$ and $M \subseteq M$.
- The subsets of $M:=\{\star, \bullet\}$ are the following: $\emptyset,\{\star\},\{\bullet\}$ and M itself.
- In order to depict sets and there subsets one can use so-called Venn diagrams: $A \subseteq B$.

Given two sets A and B, we define the following:

Definition

The intersection of A and B, denoted by $A \cap B$, is the set of elements contained in A and in B.

Definition

The union of A and B, denoted by $A \cup B$, is the set of elements contained in A or in B.

In certain settings all sets under discussion are considered to be subsets of a given universal set U. We can then define the following:

Definition

The complement of a set A (within U), denoted by A^{c}, is the set of all elements not contained in A.

Examples:

- Let $A:=\{1,2,3,4\}$ and $B:=\{1,3,7,8\}$

Then $A \cap B=\{1,3\}$ and $A \cup B=\{1,2,3,4,7,8\}$

- For every set M it holds that $M \cap M=M$ and $M \cup M=M$. Moreover $M \cap \emptyset=\emptyset$ and $M \cup \emptyset=M$.
- Let $U:=\{1,2,3,4,5,6,7,8\}$. Then $A^{c}=\{5,6,7,8\}$ and $B^{c}=\{2,4,5,6\}$.
- For every set $M(\subseteq U)$ it holds that $M \cap M^{c}=\emptyset$. One says that M and M^{c} are disjoint.
- Let $C:=\{5,6\}$. Then $A \cap C=\emptyset ; A$ and C are disjoint.
- For every set M it holds that $\left(M^{c}\right)^{c}=M$.

De Morgan's rules

For two sets A and B the following holds:

$$
(A \cap B)^{c}=A^{c} \cup B^{c} \quad \text { and } \quad(A \cup B)^{c}=A^{c} \cap B^{c}
$$

In the following we will encounter numbers that belong to certain special sets:

- The natural numbers (or positive integers): $1,2,3,4$, and so on. This set is denoted by \mathbb{N}.
- The integers (the positive and the negative integers and the element 0): ...,-4, $-3,-2,-1,0,1,2,3, \ldots$. This set is denoted by \mathbb{Z}.

In the following we will encounter numbers that belong to certain special sets:

- The natural numbers (or positive integers): $1,2,3,4$, and so on. This set is denoted by \mathbb{N}.
- The integers (the positive and the negative integers and the element 0): ...,-4, $-3,-2,-1,0,1,2,3, \ldots$. This set is denoted by \mathbb{Z}.
- The rational numbers are fractions, i.e. that can be written as $\frac{m}{n}$ where m and n are integers. These are numbers such as $1 / 2,-1 / 3,2 / 7, \ldots$ This set is denoted by \mathbb{Q}.

The real numbers represent a position along a continuous line. These are the rational numbers together with the irrational numbers, such as $\sqrt{2}, \pi, e, \ldots$. This set is denoted by \mathbb{R}. We use the following notation for intervals: $[a, b] \ldots$ all reals x with $a \leq x \leq b$

For these sets the following holds:

- The rational numbers are fractions, i.e. that can be written as $\frac{m}{n}$ where m and n are integers. These are numbers such as $1 / 2,-1 / 3,2 / 7, \ldots$ This set is denoted by \mathbb{Q}.
- The real numbers represent a position along a continuous line. These are the rational numbers together with the irrational numbers, such as $\sqrt{2}, \pi, e, \ldots$ This set is denoted by \mathbb{R}.
We use the following notation for intervals:
\square

For these sets the following holds:

- The rational numbers are fractions, i.e. that can be written as $\frac{m}{n}$ where m and n are integers. These are numbers such as $1 / 2,-1 / 3,2 / 7, \ldots$. This set is denoted by \mathbb{Q}.
- The real numbers represent a position along a continuous line. These are the rational numbers together with the irrational numbers, such as $\sqrt{2}, \pi, e, \ldots$. This set is denoted by \mathbb{R}.
We use the following notation for intervals:
$[a, b] \ldots$ all reals x with $a \leq x \leq b$
] $a, b[\ldots$ all reals x with $a<x<b$
For these sets the following holds:
- The rational numbers are fractions, i.e. that can be written as $\frac{m}{n}$ where m and n are integers. These are numbers such as $1 / 2,-1 / 3,2 / 7, \ldots$. This set is denoted by \mathbb{Q}.
- The real numbers represent a position along a continuous line. These are the rational numbers together with the irrational numbers, such as $\sqrt{2}, \pi, e, \ldots$. This set is denoted by \mathbb{R}.
We use the following notation for intervals:
$[a, b] \ldots$ all reals x with $a \leq x \leq b$
] $a, b[\ldots$ all reals x with $a<x<b$
For these sets the following holds:

$$
\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}
$$

Outline

(2) Functions

Definition
Plotting a function
Linear functions
Polynomials
Exponential function and logarithm
Trigonometric functions

What is a function?

Definition

A function $f: X \rightarrow Y$ is a rule that associates to every element in X a unique element of Y.

What is a function?

Definition

A function $f: X \rightarrow Y$ is a rule that associates to every element in X a unique element of Y.

X is called the domain of f, Y its range or codomain. x is the variable or argument and $f(x)=y$ is the value.
One writes $x \mapsto f(x)$ and says
" x is mapped to $f(x)$ "

Examples

- X is the set of all inhabitants of Krems, Y is the set of positive integers \mathbb{N} f is the function that associates to each person its age in days
- $X=[0,100]$ and $Y=\mathbb{N}$ and the function f describes the growth of a bacteria population over time during some experiment. The variable $x \in X$ thus represents time.
- $f(x)= \pm \sqrt{x}$ for $x \geq 0 \in \mathbb{R}$ is not a function, since it assigns to each positive real number x two values: the (positive) square root of x, and $-\sqrt{x}$.

The inverse of a function

If the function f maps x to y, the inverse function f^{-1} maps y to x.

Be careful: The inverse does not always exist on its entire domain! If two elements x_{1} and x_{2} are mapped to the same value y, the inverse cannot be determined uniquely!

Example: The inverse of $f(x)=x^{2}$ on the positive real numbers is \sqrt{x} and is $-\sqrt{x}$ on the negative real numbers. On its entire domain, f does not have an inverse!

Be careful: The inverse does not always exist on its entire domain! If two elements x_{1} and x_{2} are mapped to the same value y, the inverse cannot be determined uniquely!

Example: The inverse of $f(x)=x^{2}$ on the positive real numbers is \sqrt{x} and is $-\sqrt{x}$ on the negative real numbers. On its entire domain, f does not have an inverse!

A convenient way to represent a function defined on some real interval or on the integers is to draw its plot or graph:

Example: A baby boy is 430 mm long at his birth. He grows 9 mm a week over the first 7 weeks. This is a linear relation between age and length.

Example: A baby boy is 430 mm long at his birth. He grows 9 mm a week over the first 7 weeks. This is a linear relation between age and length.

A linear function is a special form of a polynomial function, it is a polynomial of degree 1 .

Definition

A polynomial is a function defined on \mathbb{R} of the following type

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{m} x^{m}
$$

where the a_{i} are real numbers. The number m is a positive integer and is called the degree of f.
A number $x_{0} \in \mathbb{R}$ is called a zero of f if it holds that $f\left(x_{0}\right)=0$.
A polynomial of degree m has at most m zeros. In the complex numbers, a polynomial of degree m has exactly m zeros.

A linear function is a special form of a polynomial function, it is a polynomial of degree 1 .

Definition

A polynomial is a function defined on \mathbb{R} of the following type

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{m} x^{m}
$$

where the a_{i} are real numbers. The number m is a positive integer and is called the degree of f.
A number $x_{0} \in \mathbb{R}$ is called a zero of f if it holds that $f\left(x_{0}\right)=0$.
A polynomial of degree m has at most m zeros. In the complex numbers, a polynomial of degree m has exactly m zeros.

Functions - Polynomials

Examples:

Solving quadratic equations

The zeros of a quadratic function, that is a polynomial of degree 2, can be found using the following formula:

$$
a+b x+c x^{2}=0 \Leftrightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 c}
$$

Thus the solutions are real whenever $b^{2}-4 a c \geq 0$ and when $b^{2}-4 a c=0$ there are two coinciding zeros.

Exponential function

The exponential function $f(x)=e^{x}$ is often used to model the growth or decay of some population. Euler's constant e is approximately 2.718 . The formula used for exponential growth or decay is $N=N_{0} \cdot e^{k \cdot t}$, where N is the changing quantity, t is time, N_{0} is its value at $t=0$ and k is the growth constant.
Example: The growth of some bacteria population placed out onto
agar is given by the following formula:
where t is in hours.
Question: How long coes it take until the population doubles? t must satisfy $e^{t / 5}=2$, this is the case for $t \approx 3.47$, so after roughly 3.5 hours.

Exponential function

The exponential function $f(x)=e^{x}$ is often used to model the growth or decay of some population. Euler's constant e is approximately 2.718 . The formula used for exponential growth or decay is $N=N_{0} \cdot e^{k \cdot t}$, where N is the changing quantity, t is time, N_{0} is its value at $t=0$ and k is the growth constant.
Example: The growth of some bacteria population placed out onto agar is given by the following formula:

$$
N=100 \cdot e^{t / 5}
$$

where t is in hours.
Question: How long does it take until the population doubles? t must satisfy $e^{t / 5}=2$, this is the case for $t \approx 3.47$, so after roughly 3.5 hours.

Exponential function

The exponential function $f(x)=e^{x}$ is often used to model the growth or decay of some population. Euler's constant e is approximately 2.718 . The formula used for exponential growth or decay is $N=N_{0} \cdot e^{k \cdot t}$, where N is the changing quantity, t is time, N_{0} is its value at $t=0$ and k is the growth constant.
Example: The growth of some bacteria population placed out onto agar is given by the following formula:

$$
N=100 \cdot e^{t / 5}
$$

where t is in hours.
Question: How long does it take until the population doubles?

```
must satisfy e }\mp@subsup{e}{}{t/0}=2\mathrm{ , this is the case for t }\approx3.47\mathrm{ , so after
roughly 3.5 hours.
```


Exponential function

The exponential function $f(x)=e^{x}$ is often used to model the growth or decay of some population. Euler's constant e is approximately 2.718 . The formula used for exponential growth or decay is $N=N_{0} \cdot e^{k \cdot t}$, where N is the changing quantity, t is time, N_{0} is its value at $t=0$ and k is the growth constant.
Example: The growth of some bacteria population placed out onto agar is given by the following formula:

$$
N=100 \cdot e^{t / 5}
$$

where t is in hours.
Question: How long does it take until the population doubles? t must satisfy $e^{t / 5}=2$, this is the case for $t \approx 3.47$, so after roughly 3.5 hours.

Properties of the e-function

- $e^{0}=\exp (0)=1$
- $e^{x}>0$ for all $x \in \mathbb{R}$
- $e^{x+y}=e^{x} \cdot e^{y}$

■ $e^{-x}=\frac{1}{e^{x}}$
$e^{x \cdot y}=\left(e^{x}\right)^{y}=\left(e^{y}\right)^{x}$

Logarithms

The natural logarithm $\ln (x)$ is the inverse function of the exponential function and is defined on the positive reals. Thus the following holds:

$$
e^{x}=y \Leftrightarrow x=\ln (y) .
$$

We can also define logarithms for other bases:
The logarithm to the base a is the inverse of the function a^{a} and is denoted by $\log _{a}(x)$. The following holds:

Logarithms

The natural logarithm $\ln (x)$ is the inverse function of the exponential function and is defined on the positive reals. Thus the following holds:

$$
e^{x}=y \Leftrightarrow x=\ln (y) .
$$

We can also define logarithms for other bases:
The logarithm to the base a is the inverse of the function a^{x} and is denoted by $\log _{a}(x)$. The following holds:

$$
\log _{a}(x)=\frac{\log _{e}(x)}{\log _{e}(a)}=\frac{\ln (x)}{\ln (a)}
$$

Properties of the natural logarithm

- $\ln (1)=0$
- $\ln (x \cdot y)=\ln (x)+\ln (y)$
- $\ln \left(\frac{1}{x}\right)=-\ln (x)$
- $\ln \left(x^{y}\right)=y \ln (x)$

Cosine, sine, and tangent

$$
\begin{aligned}
\cos (x) & =\frac{\text { adjacent }}{\text { hypotenuse }} \\
\sin (x) & =\frac{\text { opposite }}{\text { hypotenuse }} \\
\tan (x) & =\frac{\text { opposite }}{\text { adjacent }} \\
& =\frac{\sin (x)}{\cos (x)}
\end{aligned}
$$

Some important values

Trigonometric functions as real functions

As real functions, the cosine, sine and tangent are 360° respectively 2π-periodic, i.e. $\sin (x+2 \pi)=\sin (x)$.

Trigonometric functions as real functions

As real functions, the cosine, sine and tangent are 360° respectively 2π-periodic, i.e. $\sin (x+2 \pi)=\sin (x)$.

Outline

(3) Differential calculus

Differential quotient and tangent
Derivatives of some simple functions
Differentiation rules
Stationary points

Differential quotient

- Differential calculus - Differential quotient and tangent

Tangent

Derivatives of some simple functions

For the derivative of a function $f(x)$ we write $f^{\prime}(x)$ or $\frac{d f}{d x}$.

- $f(x)=c \quad f^{\prime}(x)=0$,
where $c \in \mathbb{R}$ is some constant
- $f(x)=x^{k} \quad f^{\prime}(x)=k \cdot x^{k-1}$,
where $k \in \mathbb{Z}$
- $f(x)=\sqrt{x}=x^{1 / 2} \quad f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$
- $f(x)=\ln (x) \quad f^{\prime}(x)=\frac{1}{x}$
- $f(x)=e^{x} \quad f^{\prime}(x)=e^{x}$
- $f(x)=\cos (x) \quad f^{\prime}(x)=-\sin (x)$
- $f(x)=\sin (x) \quad f^{\prime}(x)=\cos (x)$

Rules

- Constant factor $(c \cdot f(x))^{\prime}=c \cdot f^{\prime}(x)$, where $c \in \mathbb{R}$ is some constant
- $\operatorname{Sum}(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$
- Product $(f(x) \cdot g(x))^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$
- Quotient $\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}}$
- Chain rule $(f(g(x)))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

Examples

- What is the derivative of $f(x)=(2-x)^{2}+5 \ln (x)$?

1. Apply the sum rule: $f^{\prime}(x)=\left((2-x)^{2}\right)^{\prime}+(5 \ln (x))^{\prime}$
2. Apply the chain rule on the left part: $\left((2-x)^{2}\right)^{\prime}=-2(2-x)$
3. Apply the constant factor rule on the right part:

$$
(5 \ln (x))^{\prime}=5 \cdot(\ln (x))^{\prime}=5 \cdot 1 / x
$$

4. Put everything together: $f^{\prime}(x)=2 x+\frac{5}{x}-4$

Examples

- What is the derivative of $f(x)=\tan (2 x)$?

1. Express $\tan (x)$ using $\cos (x)$ and $\sin (x): f(x)=\frac{\sin (2 x)}{\cos (2 x)}$
2. Apply the quotient rule:

$$
\left(\frac{\sin (2 x)}{\cos (2 x)}\right)^{\prime}=\frac{(\sin (2 x))^{\prime} \cdot \cos (2 x)-\sin (2 x) \cdot(\cos (2 x))^{\prime}}{(\cos (2 x))^{2}}
$$

3. Apply the chain rule to $\sin (2 x)$ and $\cos (2 x)$: $(\sin (2 x))^{\prime}=\cos (2 x) \cdot 2,(\cos (2 x))^{\prime}=-\sin (2 x) \cdot 2$
4. Put everything together:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{2 \cos (2 x) \cos (2 x)+2 \sin (2 x) \sin (2 x)}{(\cos (2 x))^{2}} \\
& =2 \cdot\left(1+\left(\frac{\sin (2 x)}{\cos (2 x)}\right)^{2}\right)=2 \cdot\left(1+\tan (2 x)^{2}\right) \\
& =\frac{2}{\cos (2 x)^{2}}
\end{aligned}
$$

What does the derivative tell us about a function?KL

- If $f^{\prime}\left(x_{0}\right)=0$ the point x_{0} is a stationary point: it is either a saddle point or a local extremum, that is a local maximum or a local minimum.
We will see how to tell the difference in a moment.
- $f^{\prime}(x)>0$ on some interval $[a, b]$, the function f is strictly increasing on $[a, b]$. This means the following: if $x_{1}<x_{2} \in[a, b]$, then $f\left(x_{1}\right)<f\left(x_{2}\right)$
- $f^{\prime}(x)<0$ on some interval $[a, b]$, the function f is strictly decreasing on $[a, b]$.

Examples

$f^{\prime}\left(x_{0}\right)=0$

We distinguish three cases:

- $f^{\prime \prime}\left(x_{0}\right)>0$: then x_{0} is a local minimum

Example: $f(x)=\cos (x)$ and $x_{0}=\pi$
$f^{\prime}\left(x_{0}\right)=-\sin (\pi)=0$ and
$f^{\prime \prime}\left(x_{0}\right)=\left(-\sin \left(x_{0}\right)\right)^{\prime}=-\cos (\pi)=1$

$f^{\prime}\left(x_{0}\right)=0$

We distinguish three cases:

- $f^{\prime \prime}\left(x_{0}\right)>0$: then x_{0} is a local minimum

Example: $f(x)=\cos (x)$ and $x_{0}=\pi$
$f^{\prime}\left(x_{0}\right)=-\sin (\pi)=0$ and
$f^{\prime \prime}\left(x_{0}\right)=\left(-\sin \left(x_{0}\right)\right)^{\prime}=-\cos (\pi)=1$

- $f^{\prime \prime}\left(x_{0}\right)<0$: then x_{0} is a local maximum

Example: $f(x)=\cos (x)$ and $x_{0}=0$
$f^{\prime}\left(x_{0}\right)=-\sin (0)=0$ and
$f^{\prime \prime}\left(x_{0}\right)=\left(-\sin \left(x_{0}\right)\right)^{\prime}=-\cos (0)=-1$

$f^{\prime}\left(x_{0}\right)=0$

We distinguish three cases:

- $f^{\prime \prime}\left(x_{0}\right)>0$: then x_{0} is a local minimum

Example: $f(x)=\cos (x)$ and $x_{0}=\pi$
$f^{\prime}\left(x_{0}\right)=-\sin (\pi)=0$ and $f^{\prime \prime}\left(x_{0}\right)=\left(-\sin \left(x_{0}\right)\right)^{\prime}=-\cos (\pi)=1$

- $f^{\prime \prime}\left(x_{0}\right)<0$: then x_{0} is a local maximum

Example: $f(x)=\cos (x)$ and $x_{0}=0$
$f^{\prime}\left(x_{0}\right)=-\sin (0)=0$ and
$f^{\prime \prime}\left(x_{0}\right)=\left(-\sin \left(x_{0}\right)\right)^{\prime}=-\cos (0)=-1$

- $f^{\prime \prime}\left(x_{0}\right)=0$ and $f^{\prime \prime \prime}\left(x_{0}\right) \neq 0$: then x_{0} is a saddle point

Example: $f(x)=x^{3}$ and $x_{0}=0$
$f^{\prime}\left(x_{0}\right)=3 x_{0}^{2}=0$ and $f^{\prime \prime}\left(x_{0}\right)=6 x_{0}=0$ and $f^{\prime \prime \prime}\left(x_{0}\right)=6$.

Example: Logistic growth

When life scientists need to model a behaviour in which the dependent variable initially increases, but soon levels off and then drops back down to its starting value, they speak of logistic growth. Here's an example that you have probably already experienced yourself: the harder you study for an exam, the better you will do in it - but every extra hour of study results in a smaller pay-off and beyond a certain point further study can be harmful: if you overdo it and study all night, you will be so exhausted in the morning that you fail the exam!

Such a behaviour can be modelled as follows:
where t represents the hours of study and $f(t)$ the performance achieved. How do the constants a and k have to be chosen?

Example: Logistic growth

When life scientists need to model a behaviour in which the dependent variable initially increases, but soon levels off and then drops back down to its starting value, they speak of logistic growth. Here's an example that you have probably already experienced yourself: the harder you study for an exam, the better you will do in it - but every extra hour of study results in a smaller pay-off and beyond a certain point further study can be harmful: if you overdo it and study all night, you will be so exhausted in the morning that you fail the exam!

Such a behaviour can be modelled as follows:

$$
f(t)=a t \cdot\left(1-\frac{t}{k}\right)=-\frac{a}{k} t^{2}+a t
$$

where t represents the hours of study and $f(t)$ the performance achieved. How do the constants a and k have to be chosen?

Example: Logistic growth

When life scientists need to model a behaviour in which the dependent variable initially increases, but soon levels off and then drops back down to its starting value, they speak of logistic growth. Here's an example that you have probably already experienced yourself: the harder you study for an exam, the better you will do in it - but every extra hour of study results in a smaller pay-off and beyond a certain point further study can be harmful: if you overdo it and study all night, you will be so exhausted in the morning that you fail the exam!

Such a behaviour can be modelled as follows:

$$
f(t)=a t \cdot\left(1-\frac{t}{k}\right)=-\frac{a}{k} t^{2}+a t
$$

where t represents the hours of study and $f(t)$ the performance achieved. How do the constants a and k have to be chosen?

Example: Logistic growth

- Where are the zeros of f ?
- Where is f increasing, where decreasing?
- When should you definitely stop studying?

Now, let's draw the plot:

Example: Logistic growth

- Where are the zeros of f ?
- Where is f increasing, where decreasing?
- When should you definitely stop studying?

Now, let's draw the plot:

Applications

You can use differential calculus to:

- Learn more about a function: where does it have minima and maxima? Where are inflection points?
- If a function $f(t)$ represents the distance an object has travelled over time, then its first derivative $f^{\prime}(t)$ is the speed at the moment t and the second derivative $f^{\prime \prime}(t)$ is the acceleration at the moment t
- Solve optimization problems: In many applications, one is interested in maximizing or minimizing a certain parameter, for instance the costs.
- Approximate the growth a function within a small interval If x is close to x_{0} then

Applications

You can use differential calculus to:

- Learn more about a function: where does it have minima and maxima? Where are inflection points?
- If a function $f(t)$ represents the distance an object has travelled over time, then its first derivative $f^{\prime}(t)$ is the speed at the moment t and the second derivative $f^{\prime \prime}(t)$ is the acceleration at the moment t.
- Solve optimization problems: In many applications, one is interested in maximizing or minimizing a certain parameter, for instance the costs
- Approximate the growth a function within a small interval: If x is close to x_{0} then

Applications

You can use differential calculus to:

- Learn more about a function: where does it have minima and maxima? Where are inflection points?
- If a function $f(t)$ represents the distance an object has travelled over time, then its first derivative $f^{\prime}(t)$ is the speed at the moment t and the second derivative $f^{\prime \prime}(t)$ is the acceleration at the moment t.
- Solve optimization problems: In many applications, one is interested in maximizing or minimizing a certain parameter, for instance the costs.
- Approximate the growth a function within a small interval If x is close to x_{0} then

Applications

You can use differential calculus to:

- Learn more about a function: where does it have minima and maxima? Where are inflection points?
- If a function $f(t)$ represents the distance an object has travelled over time, then its first derivative $f^{\prime}(t)$ is the speed at the moment t and the second derivative $f^{\prime \prime}(t)$ is the acceleration at the moment t.
- Solve optimization problems: In many applications, one is interested in maximizing or minimizing a certain parameter, for instance the costs.
- Approximate the growth a function within a small interval: If x is close to x_{0} then $f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot\left(x-x_{0}\right)$.

Outline

(4) Integral calculus

The reverse process of differentiating
Approximation Integrals of some important functions
Applications: Calculating volumes

Integration is the reverse process to differentiationKiL

We learnt that the differential of $f(x)=x^{2}$ is $2 x$, so the integral $\int g(x) d x$ of $g(x)=2 x$ should be x^{2}.
But: We also learnt that the differential of $f(x)=x^{2}+9$ is $2 x$, so
the integral $\int g(x) d x$ of $g(x)=2 x$ should be $x^{2}+9$?!
Thus, in the same way as we lose constants in the process of differentiating, we have to replace the constant when integrating This "unknown" constant is symbolized by the letter c. We write:

and call it the indefinite integral of g with respect to x

Integration is the reverse process to differentiationkil

We learnt that the differential of $f(x)=x^{2}$ is $2 x$, so the integral $\int g(x) d x$ of $g(x)=2 x$ should be x^{2}.
But: We also learnt that the differential of $\tilde{f}(x)=x^{2}+9$ is $2 x$, so the integral $\int g(x) d x$ of $g(x)=2 x$ should be $x^{2}+9$?!
Thus, in the same way as we lose constants in the process of
differentiating, we have to replace the constant when integrating.
This "unknown"
constant is symbolized by the letter c
We write:

and call it the indefinite integral of g with respect to x

Integration is the reverse process to differentiationkiL

We learnt that the differential of $f(x)=x^{2}$ is $2 x$, so the integral $\int g(x) d x$ of $g(x)=2 x$ should be x^{2}.
But: We also learnt that the differential of $\tilde{f}(x)=x^{2}+9$ is $2 x$, so the integral $\int g(x) d x$ of $g(x)=2 x$ should be $x^{2}+9$?!
Thus, in the same way as we lose constants in the process of differentiating, we have to replace the constant when integrating.
This "unknown" constant is symbolized by the letter c.
We write:

$$
\int g(x) d x=\int 2 x d x=x^{2}+c
$$

and call it the indefinite integral of g with respect to x.

What is the definite integral?

If we denote by $F(x)$ the indefinite integral $\int f(x) d x$ of some function f, the definite integral of f between the values $x=a$ and $x=b$ is:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

What is the definite integral?

If we denote by $F(x)$ the indefinite integral $\int f(x) d x$ of some function f, the definite integral of f between the values $x=a$ and $x=b$ is:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Example

- Since $\int 2 x d x=x^{2}+c$, we have

$$
\int_{a}^{b} 2 x d x=b^{2}+c-\left(a^{2}+c\right)=b^{2}-a^{2}
$$

- $\int 1 d x=x+c$, we have $\int_{a}^{b} 1 d x=b-a$, which is the length of the interval $[a, b]$

What is the definite integral?

If we denote by $F(x)$ the indefinite integral $\int f(x) d x$ of some function f, the definite integral of f between the values $x=a$ and $x=b$ is:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Example

- Since $\int 2 x d x=x^{2}+c$, we have

$$
\int_{a}^{b} 2 x d x=b^{2}+c-\left(a^{2}+c\right)=b^{2}-a^{2}
$$

- $\int 1 d x=x+c$, we have $\int_{a}^{b} 1 d x=b-a$, which is the length of the interval $[a, b]$.

What does it represent?

Let's have a look at $\int_{a}^{b} 1 d x=b-a$ again, for $b=3$ and $a=-1$:

What does it represent?

Let's have a look at $\int_{a}^{b} 2 x d x=b^{2}-a^{2}$ again, for $b=4$ and $a=1$:

Definite integrals and areas

For a function f that always stays above the x-axis, the definite integral $\int_{a}^{b} f(x) d x$ corresponds to the area between the curve corresponding to $f(x)$, the lines $x=a, x=b$ and the x-axis.
However, if f goes below the x-axis at some points, the integral
counts a "weighted area", where every part under the x-axis gets a negative weight.

Definite integrals and areas

For a function f that always stays above the x-axis, the definite integral $\int_{a}^{b} f(x) d x$ corresponds to the area between the curve corresponding to $f(x)$, the lines $x=a, x=b$ and the x-axis. However, if f goes below the x-axis at some points, the integral counts a "weighted area", where every part under the x-axis gets a negative weight.

Example

Now let's evaluate $\int_{a}^{b} 2 x d x=b^{2}-a^{2}$ for $b=3$ and $a=-1$:

Approximation with trapeziums

The area under a curve or, equivalently, a definite integral can be approximated using the trapezium rule:

The trapezium rule with n parts

The general trapezium rule with n parts is given as follows:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx \sum_{i=0}^{n-1} \frac{1}{2} \frac{b-a}{n} \cdot\left(f\left(a+\frac{i \cdot(b-a)}{n}\right)+f\left(a+\frac{(i+1) \cdot(b-a)}{n}\right)\right) \\
& \approx \frac{b-a}{2 n}\left(f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n}\right)+f\left(x_{n+1}\right)\right)
\end{aligned}
$$

where the x_{i} are spaced out evenly on the interval $[a, b]$ and $a=x_{1}$ and $b=x_{n+1}$.

Indefinite integrals of some simple functions

- $f(x)=k \quad \int f(x) d x=k x+c$, where $k \in \mathbb{R}$ is some constant
- $f(x)=x^{k} \quad \int f(x) d x=\frac{x^{k+1}}{k+1}+c$, where $k \in \mathbb{Z}, k \neq 1$
- $f(x)=\frac{1}{2 \sqrt{x}} \quad \int f(x) d x=\sqrt{x}+c$
- $f(x)=\frac{1}{x} \quad \int f(x) d x=\ln (x)+c$
- $f(x)=e^{x} \quad \int f(x) d x=e^{x}+c$
- $f(x)=\cos (x) \quad \int f(x) d x=\sin (x)+c$
- $f(x)=\sin (x) \quad \int f(x) d x=-\cos (x)+c$

Solid figures

We can use integration not only to calculate areas but also to calculate volumes of certain solids, namely solids of revolution. These are solid figures obtained by rotating a curve around an axis.

Solid figures

We can use integration not only to calculate areas but also to calculate volumes of certain solids, namely solids of revolution. These are solid figures obtained by rotating a curve around an axis.

Idea

We cut up the solid of revolution into slices that are perpendicular to the rotation axis; these will be disks of radius $f(x)$. Then we calculate the area of these disks and "sum up" the areas for all these infinitely many disks, this is done by integration. This leads to the following formula for the volume of a solid of revolution that is obtained by rotating the curve of the function $f(x)$ around the x-axis for values of x between a and b :

$$
V=\pi \cdot \int_{a}^{b}(f(x))^{2} d x
$$

Example: Volume of a sphere

We want to use this method to rediscover the formula for the volume of a sphere with radius r.

Example: Volume of a sphere

Plugging this into the formula, we obtain:

$$
\begin{aligned}
V & =\pi \cdot \int_{-r}^{r} r^{2}-x^{2} d x=\pi \cdot \int_{-r}^{r} r^{2} d x-\pi \cdot \int_{-r}^{r} x^{2} d x \\
& =\pi \cdot r^{2}[x]_{-r}^{r}-\pi\left[\frac{x^{3}}{3}\right]_{-r}^{r} \\
& =\pi r^{2}(r-(-r))-\pi \cdot\left(\frac{r^{3}}{3}-\frac{-r^{3}}{3}\right) \\
& =2 \pi r^{3}-\pi r^{3} \frac{2}{3} \\
V & =\frac{4}{3} \pi r^{3} .
\end{aligned}
$$

Outline

(5) Vectors and matrices

Definition and interpretation of vectors
Scalar and cross product
Definition of matrices
Basic operations on matrices
Matrices as linear functions

What is a vector?

From a mathematical point of view, a vector of dimension n (a natural number) is simply an ordered list of n items, most often from \mathbb{R}, but possibly also from another set.
We use the following notation:

$$
\mathbf{v}=\vec{v}=\left(\begin{array}{c}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{lll}
a & b & c
\end{array}\right)^{T}=(a, b, c)^{T},
$$

this is a vector of dimension 3 .
We can define a multiplication of numbers - scalars - with vectors and an addition of two vectors.

What does a vector represent?

Vectors can be represented as points in n-dimensional space. For instance, for $n=2$:

$$
y \text {-axis }
$$

$$
\begin{gathered}
\mathbf{e}_{\mathbf{1}}=(1,0)^{T} \\
\mathbf{e}_{\mathbf{2}}=(0,1)^{T} \\
\mathbf{v}=(2,3)^{T} \\
\mathbf{w}=(-4,1)^{T}
\end{gathered}
$$

A vector is characterized by its length or magnitude and its direction. If two vectors have the same length and magnitude, they are the same.

What does a vector represent?

Vectors can be represented as points in n-dimensional space. For instance, for $n=2$:

$$
y \text {-axis }
$$

$$
\begin{gathered}
\mathbf{e}_{\mathbf{1}}=(1,0)^{T} \\
\mathbf{e}_{\mathbf{2}}=(0,1)^{T} \\
\mathbf{v}=(2,3)^{T} \\
\mathbf{w}=(-4,1)^{T}
\end{gathered}
$$

A vector is characterized by its length or magnitude and its direction. If two vectors have the same length and magnitude, they are the same.

Vectors can represent movement in space

Speed: distance covered per unit of time $v=d / t$
For example $5 \mathrm{~m} / \mathrm{s}, 30 \mathrm{~km} / \mathrm{h}$
This is a scalar quantity
Velocity: speed + direction of motion
For example: $30 \mathrm{~km} / \mathrm{h}$ South
This can be represented by a vector

Vectors as forces

Vectors can be used to represent forces, since vectors have both magnitude and direction. This is important in the field of biomechanics. The unit of measurement for forces is newton (N).

Some important forces

- The weight of an object is the force on the object due to gravity. Its magnitude is the product of the mass m of the object and the magnitude of the gravitational acceleration $g \approx 9.81 \mathrm{~m} / \mathrm{s}^{2}$; thus: $G=m g$. It acts on the centre of gravity of the object and is pointed towards the Earth's center.
- The acceleration acts on the centre of gravity of the object and its direction corresponds to the direction of the acceleration. Its magnitude is the product of the mass m of the object and the magnitude of the acceleration a;thus: $F_{a}=m a$.

Two laws of mechanics (1)

- The law of reaction, also known as Actio est Reactio. If one object exerts a force on another object, then the second object exerts an equal and opposite reaction force on the first.

Two laws of mechanics (2)

- When two forces act on the same point they can be replaced by a single force. This resulting force then causes the same result as the two initial forces. The parallelogram of force, tells us how to determine the resulting force:

Vector addition in general

Given two vectors $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ of the same dimension, their sum is calculated as follows:

$$
\mathbf{z}=\mathbf{v}+\mathbf{w}=\left(v_{1}+w_{1}, v_{2}+w_{2}, \ldots, v_{n}+w_{n}\right)
$$

Scalar multiplication

A scalar is a real number. Vectors can be multiplied with scalars in the following way:

$$
k \cdot \mathbf{v}=k \cdot\left(v_{1}, v_{2}, \ldots, v_{n}\right)=\left(k \cdot v_{1}, k \cdot v_{2}, \ldots, k \cdot v_{n}\right)
$$

Scalar multiplication

A scalar is a real number. Vectors can be multiplied with scalars in the following way:

$$
k \cdot \mathbf{v}=k \cdot\left(v_{1}, v_{2}, \ldots, v_{n}\right)=\left(k \cdot v_{1}, k \cdot v_{2}, \ldots, k \cdot v_{n}\right)
$$

Example

If $\mathbf{v}=(2,3)^{T}$ then $2 \cdot \mathbf{v}=(4,6)^{T}$ and $-\mathbf{v} / 3=(-2 / 3,-1)^{T}$.

Vectors with the same direction

Two vectors \mathbf{v} and \mathbf{w}, have the same direction if there is some positive scalar $k>0$ such that:

$$
\mathbf{v}=k \cdot \mathbf{w}
$$

$$
\begin{array}{r}
\mathbf{v}=(2,3)^{T} \\
\mathbf{w}=(4,6)^{T}=2 \cdot \mathbf{v} \\
\mathbf{z}=(-2 / 3,-1)^{T}=-\mathbf{v} / 3
\end{array}
$$

\mathbf{v} and \mathbf{w} have the same direction, \mathbf{v} and \mathbf{z} have opposite direction

Calculating the length of a vector

The general formula

Given a vector $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{T}$, its length is given as follows:

$$
\|\mathbf{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}
$$

$$
\begin{aligned}
\|\mathbf{v}\|^{2} & =2^{2}+3^{2}=13 \\
\|\mathbf{v}\| & =\sqrt{13}
\end{aligned}
$$

Pythagoras' theorem:

Unit vectors

Definiton

A unit vector is a vector with length 1 .
Given a vector \mathbf{v} one can obtain a unit vector with same direction as follows:

This vector is called the normalized vector of v. One often uses the following snecial unit vectors in 2-dimensional snace

$$
\mathbf{e}_{1}=(1,0)^{T} \text { and } \mathbf{e}_{2}=(0,1)^{T}
$$

and in 3-dimensional space:

$$
\mathrm{e}_{1}=(1,0,0)^{T}, \quad \mathrm{e}_{2}=(0,1,0)^{T} \text { and } \mathrm{e}_{3}=(0,0,1)^{T}
$$

Unit vectors

Definiton

A unit vector is a vector with length 1 .
Given a vector \mathbf{v} one can obtain a unit vector with same direction as follows:

$$
\hat{\mathbf{v}}=\frac{\mathbf{v}}{\|\mathbf{v}\|}
$$

This vector is called the normalized vector of \mathbf{v}. One often uses the following special unit vectors in 2-dimensional space $\mathbf{e}_{1}=(1,0)^{T}$ and $\mathbf{e}_{2}=(0,1)^{T}$
and in 3-dimensional space

$$
\mathbf{e}_{1}=(1,0,0)^{T}, \quad \mathbf{e}_{2}=(0,1,0)^{T} \text { and } \mathbf{e}_{3}=(0,0,1)^{T}
$$

Unit vectors

Definiton

A unit vector is a vector with length 1 .
Given a vector \mathbf{v} one can obtain a unit vector with same direction as follows:

$$
\hat{\mathbf{v}}=\frac{\mathbf{v}}{\|\mathbf{v}\|}
$$

This vector is called the normalized vector of \mathbf{v}. One often uses the following special unit vectors in 2-dimensional space:

$$
\mathbf{e}_{\mathbf{1}}=(1,0)^{T} \text { and } \mathbf{e}_{\mathbf{2}}=(0,1)^{T}
$$

and in 3-dimensional space:

$$
\mathbf{e}_{\mathbf{1}}=(1,0,0)^{T}, \quad \mathbf{e}_{\mathbf{2}}=(0,1,0)^{T} \text { and } \mathbf{e}_{\mathbf{3}}=(0,0,1)^{T}
$$

Scalar product

The scalar product (also: dot product) associates to two vectors $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ a scalar in the following way:

$$
\langle\mathbf{v}, \mathbf{w}\rangle=\mathbf{v} \cdot \mathbf{w}=v_{1} \cdot w_{1}+v_{2} \cdot w_{2}+\ldots+v_{n} \cdot w_{n}
$$

If $\mathbf{v} \neq \mathbf{0}, \mathbf{w} \neq \mathbf{0}$ and $\mathbf{v} \cdot \mathbf{w}=0$, this means that \mathbf{v} and \mathbf{w} are orthogonal (perpendicular).

Scalar product

The scalar product (also: dot product) associates to two vectors $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ a scalar in the following way:

$$
\langle\mathbf{v}, \mathbf{w}\rangle=\mathbf{v} \cdot \mathbf{w}=v_{1} \cdot w_{1}+v_{2} \cdot w_{2}+\ldots+v_{n} \cdot w_{n}
$$

If $\mathbf{v} \neq \mathbf{0}, \mathbf{w} \neq \mathbf{0}$ and $\mathbf{v} \cdot \mathbf{w}=0$, this means that \mathbf{v} and \mathbf{w} are orthogonal (perpendicular).

Scalar product and angles

If φ is the angle between the two vectors \mathbf{a} and \mathbf{b}, the scalar product can also be defined as follows:

$$
\mathbf{a} \cdot \mathbf{b}=\cos (\varphi) \cdot\|\mathbf{a}\| \cdot\|\mathbf{b}\| .
$$

Scalar product - Example

- $\left.(1,0)^{T} \cdot(0,1)^{T}\right)=1 \cdot 0+0 \cdot 1=0$

These two vectors are orthogonal.

- $(x, y)^{T} \cdot(-y, x)^{T}=-x y+y x=0$

These two vectors are also orthogonal.

- $(1,2,-2)^{T} \cdot(3,0,4)^{T}=1 \cdot 3+2 \cdot 0-2 \cdot 4=3-8=-5$.

These two vectors are not orthogonal.
What is the angle between these two vectors?
$\left\|(1,2,-2)^{T}\right\|=\sqrt{1+4+4}=\sqrt{9}=3$ and
$\left\|(3,0,4)^{T}\right\|=\sqrt{9+0+16}=\sqrt{25}=5$ Thus
$\cos (\varphi)=-5 /(5 \cdot 3)=-1 / 3$ and $\varphi \approx 1.91 \mathrm{rad} \approx 109.4^{\circ}$.

Cross product

The cross product of two vectors $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ and $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right)$ returns a vector that is orthogonal to the other two.

$$
\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \times\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)=\left(\begin{array}{l}
v_{2} w_{3}-v_{3} w_{2} \\
v_{3} w_{1}-v_{1} w_{3} \\
v_{1} w_{2}-v_{2} w_{1}
\end{array}\right)
$$

Cross product - Example

- The cross product of the two vectors $\mathbf{e}_{\mathbf{1}}$ and $\mathbf{e}_{\mathbf{2}}$ gives $\mathbf{e}_{\mathbf{3}}$:

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \times\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \cdot 0-0 \cdot 1 \\
0 \cdot 0-1 \cdot 0 \\
1 \cdot 1-0 \cdot 0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

- If the vectors have the same direction or one has zero length, then their cross product is zero:

$$
\left(\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right) \times\left(\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right)=\left(\begin{array}{c}
4 \cdot 1-(-2) \cdot(-2) \\
(-2) \cdot(-1)-2 \cdot 1 \\
2 \cdot(-2)-4 \cdot(-1)
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Definition

An $n \times m$ or (n, m)-matrix is a table or array consisting of n rows and m columns where every field contains a real number. We use the following notation

$$
A=\left(a_{i j}\right)_{1 \leq i, j \leq 3}=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)
$$

this is a $(3,3)$ matrix. For the entry in the i-th row and the j-th column we write $a_{i j}$.
We will see later on what matrices can be used for

The transpose of a matrix

To a matrix A we associate its transpose matrix A^{T} by mirroring the elements along the diagonal from the top left to the bottom right corner. This means that the rows in A are the columns in A^{T} and vice-versa.

$$
\text { With } A=\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \text { we have } A^{T}=\left(\begin{array}{ccc}
a & d & g \\
b & e & h \\
c & f & i
\end{array}\right)
$$

If A is of size $n \times m$, then A^{T} is of size $m \times n$.

The transpose of a matrix

To a matrix A we associate its transpose matrix A^{T} by mirroring the elements along the diagonal from the top left to the bottom right corner. This means that the rows in A are the columns in A^{T} and vice-versa.

$$
\text { With } A=\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \text { we have } A^{T}=\left(\begin{array}{ccc}
a & d & g \\
b & e & h \\
c & f & i
\end{array}\right)
$$

If A is of size $n \times m$, then A^{T} is of size $m \times n$.

Example

With $B=\left(\begin{array}{ccc}1 & 0 & -1 \\ 2 & 1 & 0\end{array}\right)$ we have $B^{T}=\left(\begin{array}{cc}1 & 2 \\ 0 & 1 \\ -1 & 0\end{array}\right)$

Special kinds of matrices (1)

- If $m=1$, we have a column vector as in the previous section.
- If $n=1$, we have a row vector.
- If $m=n$, we have a square matrix.
- A square matrix A is called symmetric, if $A^{T}=A$.

Example

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \text { or } B=\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 0 & 4 \\
3 & 4 & -1
\end{array}\right)
$$

Special kinds of matrices (2)

Among the symmetric matrices we distinguish the following types:

- Matrices where all elements above the diagonal are zero are called lower triangular matrices and matrices where all elements below the diagonal are zero are called upper triangular matrices.

$$
L=\left(\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 0 & 0 \\
7 & 0 & 3
\end{array}\right) \text { or } U=\left(\begin{array}{ccc}
-2 & 8 & 0 \\
0 & 3 & 1 \\
0 & 0 & -1
\end{array}\right)
$$

- Diagonal matrices - these are matrices where all elements except those lying on the diagonal are zero. These matrices are both upper and lower triangular matrices. For example:

Special kinds of matrices (2)

Among the symmetric matrices we distinguish the following types:

- Matrices where all elements above the diagonal are zero are called lower triangular matrices and matrices where all elements below the diagonal are zero are called upper triangular matrices.

$$
L=\left(\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 0 & 0 \\
7 & 0 & 3
\end{array}\right) \text { or } U=\left(\begin{array}{ccc}
-2 & 8 & 0 \\
0 & 3 & 1 \\
0 & 0 & -1
\end{array}\right)
$$

- Diagonal matrices - these are matrices where all elements except those lying on the diagonal are zero. These matrices are both upper and lower triangular matrices. For example:

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \text { or } B=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Special kinds of matrices (3)

The diagonal matrix of size n where all diagonal elements are equal to 1 is the identity matrix I_{n}.

$$
I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { and } I_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The columns (and equivalently the rows) of I_{n} are the vectors e_{1}, $\mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{n}}$ of dimension n.

Special kinds of matrices (3)

The diagonal matrix of size n where all diagonal elements are equal to 1 is the identity matrix I_{n}.

$$
I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { and } I_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The columns (and equivalently the rows) of I_{n} are the vectors $\mathbf{e}_{\mathbf{1}}$, $\mathbf{e}_{2}, \ldots, \mathbf{e}_{\mathrm{n}}$ of dimension n.

Addition of matrices

Two matrices A and B of the same size can be added up by adding up their elements. This means that the element $c_{i j}$ at the i-th row and j-th column of $C=A+B$ is equal to $a_{i j}+b_{i j}$.

Addition of matrices

Two matrices A and B of the same size can be added up by adding up their elements. This means that the element $c_{i j}$ at the i-th row and j-th column of $C=A+B$ is equal to $a_{i j}+b_{i j}$.

Example

$$
A+B=\left(\begin{array}{ccc}
1 & 4 & -1 \\
0 & -1 & 0 \\
5 & 0 & 3
\end{array}\right)+\left(\begin{array}{ccc}
-1 & 0 & 1 \\
2 & -2 & 4 \\
5 & -2 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 4 & 0 \\
2 & -3 & 4 \\
10 & -2 & 3
\end{array}\right)
$$

Scalar multiplication

In the same way as we can multiply vectors with scalars, we can do so with matrices. Multiplying a matrix A by some scalar k, means that every element of A is multiplied by k.
\square

Scalar multiplication

In the same way as we can multiply vectors with scalars, we can do so with matrices. Multiplying a matrix A by some scalar k, means that every element of A is multiplied by k.

Example

$$
\begin{aligned}
2 \cdot\left(\begin{array}{ccc}
1 & 4 & -1 \\
0 & -1 & 0 \\
5 & 0 & 3
\end{array}\right) & =\left(\begin{array}{ccc}
2 & 8 & -2 \\
0 & -2 & 0 \\
10 & 0 & 6
\end{array}\right) \\
-\frac{1}{4} \cdot\left(\begin{array}{ccc}
1 & 4 & -1 \\
0 & -1 & 0 \\
5 & 0 & 3
\end{array}\right) & =\left(\begin{array}{ccc}
-1 / 4 & -1 & 1 / 4 \\
0 & 1 / 4 & 0 \\
-5 / 4 & 0 & -3 / 4
\end{array}\right)
\end{aligned}
$$

Multiplication of matrices

Two matrices A and B can also be multiplied by each other if they have matching dimensions: if A has dimension $(n, m), B$ has to have dimension (m, k). Their product $C=A \cdot B$ will then have dimension (n, k).

The element $c_{i j}$ in the i-th row and j-th column of C is obtained by calculating the scalar product of the vector in the i-th row in A with the vector in the j-th column of B.

Multiplication of matrices - Example

$$
\begin{aligned}
A \cdot B & =\left(\begin{array}{ccc}
1 & 4 & -1 \\
0 & -1 & 0 \\
5 & 0 & 3
\end{array}\right) \cdot\left(\begin{array}{cc}
-1 & 0 \\
2 & -2 \\
5 & -2
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 \cdot(-1)+4 \cdot 2+(-1) \cdot 5 & 1 \cdot 0+4 \cdot(-2)+(-1) \cdot(-2) \\
0 \cdot(-1)+(-1) \cdot 2+0 \cdot 5 & 0 \cdot 0+(-1) \cdot(-2)+0 \cdot(-2) \\
5 \cdot(-1)+0 \cdot 2+3 \cdot 5 & 5 \cdot 0+0 \cdot(-2)+3 \cdot(-2)
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 & -6 \\
-2 & 2 \\
10 & -6
\end{array}\right)
\end{aligned}
$$

Matrices as linear functions

Given a matrix A of dimension (n, m), it defines a linear function on the set of all m-dimensional vectors in the following way:

$$
A(\mathbf{x})=A \cdot \mathbf{x}=\mathbf{y}
$$

The output vector \mathbf{y} is then of dimension n.

The elements of A have the following meaning: the j-th column in A is the image $A\left(\mathbf{e}_{\mathbf{j}}\right)$ of the vector $\mathbf{e}_{\mathbf{j}}$

Matrices as linear functions

Given a matrix A of dimension (n, m), it defines a linear function on the set of all m-dimensional vectors in the following way:

$$
A(\mathrm{x})=A \cdot \mathrm{x}=\mathrm{y}
$$

The output vector \mathbf{y} is then of dimension n. The elements of A have the following meaning: the j-th column in A is the image $A\left(\mathbf{e}_{\mathbf{j}}\right)$ of the vector $\mathbf{e}_{\mathbf{j}}$.

Example

$$
\left(\begin{array}{cc}
-1 & 0 \\
2 & -2
\end{array}\right) \cdot\binom{1}{0}=\binom{-1}{2},\left(\begin{array}{cc}
-1 & 0 \\
2 & -2
\end{array}\right) \cdot\binom{0}{1}=\binom{0}{-2}
$$

Examples

The following linear functions on vectors are essential for image processing:

- Rotating: The following matrix describes a rotation by the angle φ about the origin in counter-clockwise direction (in the 2-dimensional plane):

$$
\left(\begin{array}{cc}
\cos (\varphi) & -\sin (\varphi) \\
\sin (\varphi) & \cos (\varphi)
\end{array}\right)
$$

- Scaling: The following matrix describes a scaling by the factor α (both in x - and in y-direction in the 2-dimensional plane)

Examples

The following linear functions on vectors are essential for image processing:

- Rotating: The following matrix describes a rotation by the angle φ about the origin in counter-clockwise direction (in the 2-dimensional plane):

$$
\left(\begin{array}{cc}
\cos (\varphi) & -\sin (\varphi) \\
\sin (\varphi) & \cos (\varphi)
\end{array}\right)
$$

- Scaling: The following matrix describes a scaling by the factor α (both in x - and in y-direction in the 2-dimensional plane):

$$
\left(\begin{array}{ll}
\alpha & 0 \\
0 & \alpha
\end{array}\right)
$$

