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– Sets and numbers – Simple definition

Defintion

A set is a well defined collection of distinct objects. The objects
that make up a set are called elements or members.

� The elements can be anything: numbers, people, letters of the
alphabet, other sets, and so on.

� There are two ways of defining a set:
I by describing its elements; e.g. M is the set of all inhabitants

of Krems
I by listing the elements; e.g. M := {1, 2, 3, 4}

� There is no order on the elements of a set;
e.g. {1, 2, 3, 4} = {2, 1, 4, 3}

� The set that contains no elements is called the empty set
and is denoted by ∅.

� Two sets are the same if they contain the same elements.
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– Sets and numbers – Elements and subsets

Notation

We write x ∈M if x is an element of M and x 6∈M if x is not an
element of M .

Example: 4 ∈ {1, 2, 3, 4} but 5 6∈ {1, 2, 3, 4}

Definition

If every element of set A is also an element of set B, then A is
said to be a subset of B, written A ⊆ B. One also says “A is
contained in B”.

Be careful to make the difference between elements and subsets!
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– Sets and numbers – Elements and subsets

Examples:

� {4} ⊆ {1, 2, 3, 4}
whereas 4 ⊆ {1, 2, 3, 4} does not make sense.

� For every set M it holds that ∅ ⊆M and M ⊆M .

� The subsets of M := {F, •} are the following: ∅, {F}, {•}
and M itself.

� In order to depict sets and there subsets one can use so-called
Venn diagrams: A ⊆ B.
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– Sets and numbers – Union, intersection and complement

Given two sets A and B, we define the following:

Definition

The intersection of A and B,
denoted by A ∩B, is the set of
elements contained in A and in B.

Definition

The union of A and B, denoted
by A ∪B, is the set of elements
contained in A or in B.
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– Sets and numbers – Union, intersection and complement

In certain settings all sets under discussion are considered to be
subsets of a given universal set U . We can then define the
following:

Definition

The complement of a set A (within U), denoted by Ac, is the set
of all elements not contained in A.
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– Sets and numbers – Union, intersection and complement

Examples:

� Let A := {1, 2, 3, 4} and B := {1, 3, 7, 8}
Then A ∩B = {1, 3} and A ∪B = {1, 2, 3, 4, 7, 8}

� For every set M it holds that M ∩M =M and M ∪M =M .
Moreover M ∩ ∅ = ∅ and M ∪ ∅ =M .

� Let U := {1, 2, 3, 4, 5, 6, 7, 8}. Then Ac = {5, 6, 7, 8} and
Bc = {2, 4, 5, 6}.

� For every set M (⊆ U) it holds that M ∩M c = ∅. One says
that M and M c are disjoint.

� Let C := {5, 6}. Then A ∩ C = ∅; A and C are disjoint.

� For every set M it holds that (M c)c =M .
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– Sets and numbers – Union, intersection and complement

De Morgan’s rules

For two sets A and B the following holds:

(A ∩B)c = Ac ∪Bc and (A ∪B)c = Ac ∩Bc
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– Sets and numbers – Special number sets

In the following we will encounter numbers that belong to certain
special sets:

� The natural numbers (or positive integers): 1, 2, 3, 4, and
so on. This set is denoted by N.

� The integers (the positive and the negative integers and the
element 0): ...,-4, -3, -2, -1, 0, 1, 2, 3, ... . This set is
denoted by Z.
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– Sets and numbers – Special number sets

� The rational numbers are fractions, i.e. that can be written
as m

n where m and n are integers. These are numbers such as
1/2,−1/3, 2/7, . . .. This set is denoted by Q.

� The real numbers represent a position along a continuous
line. These are the rational numbers together with the
irrational numbers, such as

√
2, π, e, . . .. This set is denoted

by R.
We use the following notation for intervals:
[a, b] ... all reals x with a ≤ x ≤ b
]a, b[ ... all reals x with a < x < b

For these sets the following holds:

N ⊆ Z ⊆ Q ⊆ R.
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– Functions – Definition

What is a function?

Definition

A function f : X → Y is a rule that associates to every element in
X a unique element of Y .

X is called the domain of f ,
Y its range or codomain.
x is the variable or argument
and f(x) = y is the value.
One writes x 7→ f(x) and says
“x is mapped to f(x)”
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– Functions – Definition

Examples

� X is the set of all inhabitants of Krems,
Y is the set of positive integers N
f is the function that associates to each person its age in days

� X = [0, 100] and Y = N and the function f describes the
growth of a bacteria population over time during some
experiment. The variable x ∈ X thus represents time.

� f(x) = ±
√
x for x ≥ 0 ∈ R is not a function, since it assigns

to each positive real number x two values: the (positive)
square root of x, and −

√
x.
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– Functions – Definition

The inverse of a function

If the function f maps x to y, the inverse function f−1 maps y to
x.
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– Functions – Definition

Be careful: The inverse does not always exist on its entire domain!
If two elements x1 and x2 are mapped to the same value y, the
inverse cannot be determined uniquely!

Example: The inverse of f(x) = x2 on the positive real numbers is√
x and is −

√
x on the negative real numbers. On its entire

domain, f does not have an inverse!
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– Functions – Plotting a function

A convenient way to represent a function defined on some real
interval or on the integers is to draw its plot or graph:

x-axis

y-axis

f(x) = x
2 − 1

f(x) = sin(x)

f(x) = 2
√
x
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– Functions – Linear functions

Example: A baby boy is 430mm long at his birth. He grows 9mm a
week over the first 7 weeks. This is a linear relation between age
and length.
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– Functions – Linear functions

Example: A baby boy is 430mm long at his birth. He grows 9mm a
week over the first 7 weeks. This is a linear relation between age
and length.

age in weeks

length in mm

0 1 2 3 4 5 6 7
420

430

440

450

460

470

480

490

500

1

9

f(x) = 430 + 9x
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– Functions – Polynomials

A linear function is a special form of a polynomial function, it is a
polynomial of degree 1.

Definition

A polynomial is a function defined on R of the following type

f(x) = a0 + a1x+ a2x
2 + . . .+ amx

m,

where the ai are real numbers. The number m is a positive integer
and is called the degree of f .
A number x0 ∈ R is called a zero of f if it holds that f(x0) = 0.

A polynomial of degree m has at most m zeros. In the complex
numbers, a polynomial of degree m has exactly m zeros.

KL Krems Marie-Louise Bruner 20



– Functions – Polynomials

A linear function is a special form of a polynomial function, it is a
polynomial of degree 1.

Definition

A polynomial is a function defined on R of the following type

f(x) = a0 + a1x+ a2x
2 + . . .+ amx

m,

where the ai are real numbers. The number m is a positive integer
and is called the degree of f .
A number x0 ∈ R is called a zero of f if it holds that f(x0) = 0.

A polynomial of degree m has at most m zeros. In the complex
numbers, a polynomial of degree m has exactly m zeros.

KL Krems Marie-Louise Bruner 20



– Functions – Polynomials

Examples:

x

y
f(x) = 2x− 3 = 2(x− 3/2)

f(x) = x3 = (x− 0)3

f(x) = x2/4 + 1
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– Functions – Polynomials

Solving quadratic equations

The zeros of a quadratic function, that is a polynomial of degree
2, can be found using the following formula:

a+ bx+ cx2 = 0⇔ x =
−b±

√
b2 − 4ac

2c

Thus the solutions are real whenever b2 − 4ac ≥ 0 and when
b2 − 4ac = 0 there are two coinciding zeros.
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– Functions – Exponential function and logarithm

Exponential function

The exponential function f(x) = ex is often used to model the
growth or decay of some population. Euler’s constant e is
approximately 2.718. The formula used for exponential growth or
decay is N = N0 · ek·t, where N is the changing quantity, t is time,
N0 is its value at t = 0 and k is the growth constant.
Example: The growth of some bacteria population placed out onto
agar is given by the following formula:

N = 100 · et/5,

where t is in hours.
Question: How long does it take until the population doubles?
t must satisfy et/5 = 2, this is the case for t ≈ 3.47, so after
roughly 3.5 hours.
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– Functions – Exponential function and logarithm

Properties of the e-function

x

y

-3 -2 -1 0 1 2 3 4
0

10

20

30

40

50

� e0 = exp(0) = 1

� ex > 0 for all x ∈ R
� ex+y = ex · ey

� e−x = 1
ex

� ex·y = (ex)y = (ey)x
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– Functions – Exponential function and logarithm

Logarithms

The natural logarithm ln(x) is the inverse function of the
exponential function and is defined on the positive reals. Thus the
following holds:

ex = y ⇔ x = ln(y).

We can also define logarithms for other bases:
The logarithm to the base a is the inverse of the function ax and
is denoted by loga(x). The following holds:

loga(x) =
loge(x)

loge(a)
=

ln(x)

ln(a)
.
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– Functions – Exponential function and logarithm

Properties of the natural logarithm

x

y

0 1 2 3 4
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

� ln(1) = 0

� ln(x · y) = ln(x) + ln(y)

� ln
(
1
x

)
= − ln(x)

� ln (xy) = y ln(x)
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– Functions – Trigonometric functions

Cosine, sine, and tangent

� cos(x) = adjacent
hypotenuse

� sin(x) = opposite
hypotenuse

� tan(x) = opposite
adjacent

tan(x) = sin(x)
cos(x)
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– Functions – Trigonometric functions

Some important values
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– Functions – Trigonometric functions

Trigonometric functions as real functions

As real functions, the cosine, sine and tangent are 360◦-
respectively 2π-periodic, i.e. sin(x+ 2π) = sin(x).

x

y

0 π
2

π 3π
2

2π−π
2

−π−3π
2

−2π
-1

0

1

cos(x)

sin(x)
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– Differential calculus
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– Differential calculus – Differential quotient and tangent

Differential quotient

x

y

x0 x0 + h

f(x0)

f(x0 + h)

f(x0 + h)− f(x0)

h

f(x)

4f
4x (x0, h) =

f(x0+h)−f(x0)
h
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– Differential calculus – Differential quotient and tangent

Tangent

x

y

x0

f(x0)

f(x)

Tangent to f at the point x0

Tx0(x) = f ′(x0) · (x− x0) + f(x0)
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– Differential calculus – Derivatives of some simple functions

Derivatives of some simple functions

For the derivative of a function f(x) we write f ′(x) or df
dx .

� f(x) = c f ′(x) = 0,
where c ∈ R is some constant

� f(x) = xk f ′(x) = k · xk−1,
where k ∈ Z

� f(x) =
√
x = x1/2 f ′(x) = 1

2
√
x

� f(x) = ln(x) f ′(x) = 1
x

� f(x) = ex f ′(x) = ex

� f(x) = cos(x) f ′(x) = − sin(x)

� f(x) = sin(x) f ′(x) = cos(x)
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– Differential calculus – Differentiation rules

Rules

� Constant factor (c · f(x))′ = c · f ′(x),
where c ∈ R is some constant

� Sum (f(x) + g(x))′ = f ′(x) + g′(x)

� Product (f(x) · g(x))′ = f ′(x) · g(x) + f(x) · g′(x)

� Quotient
(
f(x)
g(x)

)′
= f ′(x)·g(x)−f(x)·g′(x)

(g(x))2

� Chain rule (f(g(x)))′ = f ′(g(x)) · g′(x)
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– Differential calculus – Differentiation rules

Examples

� What is the derivative of f(x) = (2− x)2 + 5 ln(x)?

1. Apply the sum rule: f ′(x) =
(
(2− x)2

)′
+ (5 ln(x))

′

2. Apply the chain rule on the left part:
(
(2− x)2

)′
= −2(2− x)

3. Apply the constant factor rule on the right part:
(5 ln(x))

′
= 5 · (ln(x))′ = 5 · 1/x

4. Put everything together: f ′(x) = 2x+ 5
x − 4
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– Differential calculus – Differentiation rules

Examples

� What is the derivative of f(x) = tan(2x)?

1. Express tan(x) using cos(x) and sin(x): f(x) = sin(2x)
cos(2x)

2. Apply the quotient rule:(
sin(2x)
cos(2x)

)′
= (sin(2x))′·cos(2x)−sin(2x)·(cos(2x))′

(cos(2x))2

3. Apply the chain rule to sin(2x) and cos(2x):
(sin(2x))′ = cos(2x) · 2, (cos(2x))′ = − sin(2x) · 2

4. Put everything together:

f ′(x) =
2 cos(2x) cos(2x) + 2 sin(2x) sin(2x)

(cos(2x))2

= 2 ·

(
1 +

(
sin(2x)

cos(2x)

)2
)

= 2 ·
(
1 + tan(2x)2

)
=

2

cos(2x)2
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– Differential calculus – Stationary points

What does the derivative tell us about a function?

� If f ′(x0) = 0 the point x0 is a stationary point: it is either a
saddle point or a local extremum, that is a local maximum
or a local minimum.
We will see how to tell the difference in a moment.

� f ′(x) > 0 on some interval [a, b], the function f is strictly
increasing on [a, b]. This means the following: if
x1 < x2 ∈ [a, b], then f(x1) < f(x2)

� f ′(x) < 0 on some interval [a, b], the function f is strictly
decreasing on [a, b].
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– Differential calculus – Stationary points

Examples

x

y

f(x) = cos(x)

g(x) = x3/30

g′(0) = 0

f ′(0) = 0

f ′(π) = 0

g is increasing

f is increasing

f is decreasing

f is increasing
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– Differential calculus – Stationary points

f ′(x0) = 0

We distinguish three cases:

� f ′′(x0) > 0: then x0 is a local minimum
Example: f(x) = cos(x) and x0 = π
f ′(x0) = − sin(π) = 0 and
f ′′(x0) = (− sin(x0))

′ = − cos(π) = 1

� f ′′(x0) < 0: then x0 is a local maximum
Example: f(x) = cos(x) and x0 = 0
f ′(x0) = − sin(0) = 0 and
f ′′(x0) = (− sin(x0))

′ = − cos(0) = −1
� f ′′(x0) = 0 and f ′′′(x0) 6= 0: then x0 is a saddle point

Example: f(x) = x3 and x0 = 0
f ′(x0) = 3x20 = 0 and f ′′(x0) = 6x0 = 0 and f ′′′(x0) = 6.
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– Differential calculus – Stationary points
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– Differential calculus – Stationary points

Example: Logistic growth

When life scientists need to model a behaviour in which the
dependent variable initially increases, but soon levels off and then
drops back down to its starting value, they speak of logistic
growth. Here’s an example that you have probably already
experienced yourself: the harder you study for an exam, the better
you will do in it - but every extra hour of study results in a smaller
pay-off and beyond a certain point further study can be harmful: if
you overdo it and study all night, you will be so exhausted in the
morning that you fail the exam!

Such a behaviour can be modelled as follows:

f(t) = at ·
(
1− t

k

)
= −a

k
t2 + at,

where t represents the hours of study and f(t) the performance
achieved. How do the constants a and k have to be chosen?
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– Differential calculus – Stationary points

Example: Logistic growth

� Where are the zeros of f?

� Where is f increasing, where decreasing?

� When should you definitely stop studying?

Now, let’s draw the plot:

t

f(t)

k
2

k

ak
4

at ·
(
1− t

k

)
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– Differential calculus – Stationary points

Applications

You can use differential calculus to:

� Learn more about a function: where does it have minima and
maxima? Where are inflection points?

� If a function f(t) represents the distance an object has
travelled over time, then its first derivative f ′(t) is the speed
at the moment t and the second derivative f ′′(t) is the
acceleration at the moment t.

� Solve optimization problems: In many applications, one is
interested in maximizing or minimizing a certain parameter,
for instance the costs.

� Approximate the growth a function within a small interval:
If x is close to x0 then f(x) ≈ f(x0) + f ′(x0) · (x− x0).
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– Integral calculus

Outline

4 Integral calculus
The reverse process of differentiating
Approximation
Integrals of some important functions
Applications: Calculating volumes
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– Integral calculus – The reverse process of differentiating

Integration is the reverse process to differentiation

We learnt that the differential of f(x) = x2 is 2x, so the integral∫
g(x)dx of g(x) = 2x should be x2.

But: We also learnt that the differential of f̃(x) = x2 + 9 is 2x, so
the integral

∫
g(x)dx of g(x) = 2x should be x2 + 9?!

Thus, in the same way as we lose constants in the process of
differentiating, we have to replace the constant when integrating.
This “unknown” constant is symbolized by the letter c.
We write: ∫

g(x)dx =

∫
2xdx = x2 + c

and call it the indefinite integral of g with respect to x.
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– Integral calculus – The reverse process of differentiating

What is the definite integral?

If we denote by F (x) the indefinite integral
∫
f(x)dx of some

function f , the definite integral of f between the values x = a
and x = b is: ∫ b

a
f(x)dx = F (b)− F (a)

Example

� Since
∫
2xdx = x2 + c, we have∫ b

a 2xdx = b2 + c− (a2 + c) = b2 − a2.

�

∫
1dx = x+ c, we have

∫ b
a 1dx = b− a, which is the length of

the interval [a, b].
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– Integral calculus – The reverse process of differentiating

What does it represent?

Let’s have a look at
∫ b
a 1dx = b− a again, for b = 3 and a = −1:

x

y

-1 3

length: b− a = 4

height: 1
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– Integral calculus – The reverse process of differentiating

What does it represent?

Let’s have a look at
∫ b
a 2xdx = b2 − a2 again, for b = 4 and a = 1:

x

y

1 4

2

8

length: b− a = 3

height:

2a+ 2b = 10
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– Integral calculus – The reverse process of differentiating

Definite integrals and areas

For a function f that always stays above the x-axis, the definite
integral

∫ b
a f(x)dx corresponds to the area between the curve

corresponding to f(x), the lines x = a, x = b and the x-axis.
However, if f goes below the x-axis at some points, the integral
counts a “weighted area”, where every part under the x-axis gets a
negative weight.
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– Integral calculus – The reverse process of differentiating

Example

Now let’s evaluate
∫ b
a 2xdx = b2 − a2 for b = 3 and a = −1:

x

y

-1 3

-2

6

area: 3·6
2 = 9

area: 1·2
2 = 1

+

-
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– Integral calculus – Approximation

Approximation with trapeziums

The area under a curve or, equivalently, a definite integral can be
approximated using the trapezium rule:

x

y

f(x) = −0.1x2 + 2

-2 0 42

f(2) + f(4)f(0) + f(2)f(−2) + f(0)
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– Integral calculus – Approximation

The trapezium rule with n parts

The general trapezium rule with n parts is given as follows:

∫ b
a f(x)dx≈

∑n−1
i=0

1
2
b−a
n ·

(
f
(
a+ i·(b−a)

n

)
+ f

(
a+ (i+1)·(b−a)

n

))
≈ b−a

2n (f(x1) + 2f(x2) + . . .+ 2f(xn) + f(xn+1)),

where the xi are spaced out evenly on the interval [a, b] and
a = x1 and b = xn+1.

x

= f(xi+1)f(xi) =

= b−a
n
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– Integral calculus – Integrals of some important functions

Indefinite integrals of some simple functions

� f(x) = k
∫
f(x)dx = kx+ c,

where k ∈ R is some constant

� f(x) = xk
∫
f(x)dx = xk+1

k+1 + c,
where k ∈ Z, k 6= 1

� f(x) = 1
2
√
x

∫
f(x)dx =

√
x+ c

� f(x) = 1
x

∫
f(x)dx = ln(x) + c

� f(x) = ex
∫
f(x)dx = ex + c

� f(x) = cos(x)
∫
f(x)dx = sin(x) + c

� f(x) = sin(x)
∫
f(x)dx = − cos(x) + c
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– Integral calculus – Applications: Calculating volumes

Solid figures

We can use integration not only to calculate areas but also to
calculate volumes of certain solids, namely solids of revolution.
These are solid figures obtained by rotating a curve around an axis.

Link
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– Integral calculus – Applications: Calculating volumes

Idea

We cut up the solid of revolution into slices that are perpendicular
to the rotation axis; these will be disks of radius f(x). Then we
calculate the area of these disks and “sum up” the areas for all
these infinitely many disks, this is done by integration.
This leads to the following formula for the volume of a solid of
revolution that is obtained by rotating the curve of the function
f(x) around the x-axis for values of x between a and b:

V = π ·
∫ b

a
(f(x))2dx.
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– Integral calculus – Applications: Calculating volumes

Example: Volume of a sphere

We want to use this method to rediscover the formula for the
volume of a sphere with radius r.

x

y

f(x) =
√
r2 − x2

−r x0 0

r

−r

r

Area:
π · (r2 − x20)
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– Integral calculus – Applications: Calculating volumes

Example: Volume of a sphere

Plugging this into the formula, we obtain:

V = π ·
∫ r

−r
r2 − x2dx = π ·

∫ r

−r
r2dx− π ·

∫ r

−r
x2dx

= π · r2 [x]r−r − π
[
x3

3

]r
−r

= πr2(r − (−r))− π ·
(
r3

3
− −r

3

3

)
= 2πr3 − πr3 2

3

V=
4

3
πr3.
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– Vectors and matrices

Outline

5 Vectors and matrices
Definition and interpretation of vectors
Scalar and cross product
Definition of matrices
Basic operations on matrices
Matrices as linear functions
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– Vectors and matrices – Definition and interpretation of vectors

What is a vector?

From a mathematical point of view, a vector of dimension n (a
natural number) is simply an ordered list of n items, most often
from R, but possibly also from another set.
We use the following notation:

v = ~v =

 a
b
c

 =
(
a b c

)T
= (a, b, c)T ,

this is a vector of dimension 3.
We can define a multiplication of numbers – scalars – with vectors
and an addition of two vectors.
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– Vectors and matrices – Definition and interpretation of vectors

What does a vector represent?

Vectors can be represented as points in n-dimensional space. For
instance, for n = 2:

x-axis

y-axis

e1

e2

v

v

we1 = (1, 0)T

e2 = (0, 1)T

v = (2, 3)T

w = (−4, 1)T

A vector is characterized by its length or magnitude and its
direction. If two vectors have the same length and magnitude,
they are the same.
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– Vectors and matrices – Definition and interpretation of vectors

Vectors can represent movement in space

Speed: distance covered per unit of time v = d/t
For example 5 m/s, 30 km/h
This is a scalar quantity

Velocity: speed + direction of motion
For example: 30 km/h South
This can be represented by a vector
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– Vectors and matrices – Definition and interpretation of vectors

Vectors as forces

Vectors can be used to represent forces, since vectors have both
magnitude and direction. This is important in the field of
biomechanics. The unit of measurement for forces is newton (N).
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– Vectors and matrices – Definition and interpretation of vectors

Some important forces

� The weight of an object is the force on the object due to
gravity. Its magnitude is the product of the mass m of the
object and the magnitude of the gravitational acceleration
g ≈ 9.81m/s2;thus: G = mg. It acts on the centre of gravity
of the object and is pointed towards the Earth’s center.

� The acceleration acts on the centre of gravity of the object
and its direction corresponds to the direction of the
acceleration. Its magnitude is the product of the mass m of
the object and the magnitude of the acceleration a;thus:
Fa = ma.
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– Vectors and matrices – Definition and interpretation of vectors

Two laws of mechanics (1)

� The law of reaction, also known as Actio est Reactio.
If one object exerts a force on another object, then the second
object exerts an equal and opposite reaction force on the first.
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– Vectors and matrices – Definition and interpretation of vectors

Two laws of mechanics (2)

� When two forces act on the same point they can be replaced
by a single force. This resulting force then causes the same
result as the two initial forces. The parallelogram of force,
tells us how to determine the resulting force:
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– Vectors and matrices – Definition and interpretation of vectors

Vector addition in general

Given two vectors v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn)
of the same dimension, their sum is calculated as follows:

z = v +w = (v1 + w1, v2 + w2, . . . , vn + wn)
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– Vectors and matrices – Definition and interpretation of vectors

Scalar multiplication

A scalar is a real number. Vectors can be multiplied with scalars
in the following way:

k · v = k · (v1, v2, . . . , vn) = (k · v1, k · v2, . . . , k · vn)

Example

If v = (2, 3)T then 2 · v = (4, 6)T and −v/3 = (−2/3,−1)T .
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– Vectors and matrices – Definition and interpretation of vectors

Vectors with the same direction

Two vectors v and w, have the same direction if there is some
positive scalar k > 0 such that:

v = k ·w.

e1

e2

w

v

z

v = (2, 3)T

w = (4, 6)T = 2 · v
z = (−2/3,−1)T = −v/3

v and w have the same direction, v and z have opposite direction
KL Krems Marie-Louise Bruner 67



– Vectors and matrices – Definition and interpretation of vectors

Calculating the length of a vector

v = (2, 3)T

= 2

= 3

Pythagoras’ theorem:

||v||2 = 22 + 32 = 13

||v|| =
√
13

The general formula

Given a vector v = (v1, v2, . . . , vn)
T ,

its length is given as follows:

||v|| =
√
v21 + v22 + . . .+ v2n.
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– Vectors and matrices – Definition and interpretation of vectors

Unit vectors

Definiton

A unit vector is a vector with length 1.

Given a vector v one can obtain a unit vector with same direction
as follows:

v̂ =
v

||v||
This vector is called the normalized vector of v. One often uses
the following special unit vectors in 2-dimensional space:

e1 = (1, 0)T and e2 = (0, 1)T

and in 3-dimensional space:

e1 = (1, 0, 0)T , e2 = (0, 1, 0)T and e3 = (0, 0, 1)T
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– Vectors and matrices – Scalar and cross product

Scalar product

The scalar product (also: dot product) associates to two vectors
v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) a scalar in the
following way:

〈v,w〉 = v ·w = v1 · w1 + v2 · w2 + . . .+ vn · wn.
If v 6= 0, w 6= 0 and v ·w = 0, this means that v and w are
orthogonal (perpendicular).

Scalar product and angles

If ϕ is the angle between the two
vectors a and b, the scalar product can
also be defined as follows:

a · b = cos(ϕ) · ||a|| · ||b||.
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– Vectors and matrices – Scalar and cross product

Scalar product - Example

� (1, 0)T · (0, 1)T ) = 1 · 0 + 0 · 1 = 0
These two vectors are orthogonal.

� (x, y)T · (−y, x)T = −xy + yx = 0
These two vectors are also orthogonal.

� (1, 2,−2)T · (3, 0, 4)T = 1 · 3 + 2 · 0− 2 · 4 = 3− 8 = −5.
These two vectors are not orthogonal.
What is the angle between these two vectors?
||(1, 2,−2)T || =

√
1 + 4 + 4 =

√
9 = 3 and

||(3, 0, 4)T || =
√
9 + 0 + 16 =

√
25 = 5 Thus

cos(ϕ) = −5/(5 · 3) = −1/3 and ϕ ≈ 1.91 rad ≈ 109.4◦.
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– Vectors and matrices – Scalar and cross product

Cross product

The cross product of two vectors v = (v1, v2, v3) and
w = (w1, w2, w3) returns a vector that is orthogonal to the other
two.

 v1
v2
v3

×
 w1

w2

w3

 =

 v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1


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– Vectors and matrices – Scalar and cross product

Cross product - Example

� The cross product of the two vectors e1 and e2 gives e3: 1
0
0

×
 0

1
0

 =

 0 · 0− 0 · 1
0 · 0− 1 · 0
1 · 1− 0 · 0

 =

 0
0
1


� If the vectors have the same direction or one has zero length,

then their cross product is zero: 2
4
−2

×
 −1−2

1

 =

 4 · 1− (−2) · (−2)
(−2) · (−1)− 2 · 1
2 · (−2)− 4 · (−1)

 =

 0
0
0


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– Vectors and matrices – Definition of matrices

Definition

An n×m or (n,m)-matrix is a table or array consisting of n rows
and m columns where every field contains a real number. We use
the following notation

A = (aij)1≤i,j≤3 =

 a b c
d e f
g h i

 ,

this is a (3, 3) matrix. For the entry in the i-th row and the j-th
column we write aij .
We will see later on what matrices can be used for.
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– Vectors and matrices – Definition of matrices

The transpose of a matrix

To a matrix A we associate its transpose matrix AT by mirroring
the elements along the diagonal from the top left to the bottom
right corner. This means that the rows in A are the columns in AT

and vice-versa.

With A =

 a b c
d e f
g h i

 we have AT =

 a d g
b e h
c f i


If A is of size n×m, then AT is of size m× n.

Example

With B =

(
1 0 −1
2 1 0

)
we have BT =

 1 2
0 1
−1 0


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– Vectors and matrices – Definition of matrices

Special kinds of matrices (1)

� If m = 1, we have a column vector as in the previous section.

� If n = 1, we have a row vector.

� If m = n, we have a square matrix.

� A square matrix A is called symmetric, if AT = A.

Example

A =

(
1 2
2 1

)
or B =

 1 2 3
2 0 4
3 4 −1


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– Vectors and matrices – Definition of matrices

Special kinds of matrices (2)

Among the symmetric matrices we distinguish the following types:

� Matrices where all elements above the diagonal are zero are
called lower triangular matrices and matrices where all
elements below the diagonal are zero are called upper
triangular matrices.

L =

 2 0 0
−1 0 0
7 0 3

 or U =

 −2 8 0
0 3 1
0 0 −1


� Diagonal matrices - these are matrices where all elements

except those lying on the diagonal are zero. These matrices
are both upper and lower triangular matrices. For example:

A =

(
2 0
0 1

)
or B =

 −2 0 0
0 3 0
0 0 −1


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– Vectors and matrices – Definition of matrices

Special kinds of matrices (3)

The diagonal matrix of size n where all diagonal elements are
equal to 1 is the identity matrix In.

I2 =

(
1 0
0 1

)
and I3 =

 1 0 0
0 1 0
0 0 1


The columns (and equivalently the rows) of In are the vectors e1,
e2, ..., en of dimension n.
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– Vectors and matrices – Basic operations on matrices

Addition of matrices

Two matrices A and B of the same size can be added up by
adding up their elements. This means that the element cij at the
i-th row and j-th column of C = A+B is equal to aij + bij .

Example

A+B =

 1 4 −1
0 −1 0
5 0 3

+

 −1 0 1
2 −2 4
5 −2 0

 =

 0 4 0
2 −3 4
10 −2 3


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– Vectors and matrices – Basic operations on matrices

Scalar multiplication

In the same way as we can multiply vectors with scalars, we can do
so with matrices. Multiplying a matrix A by some scalar k, means
that every element of A is multiplied by k.

Example

2 ·

 1 4 −1
0 −1 0
5 0 3

 =

 2 8 −2
0 −2 0
10 0 6


−1

4
·

 1 4 −1
0 −1 0
5 0 3

 =

 −1/4 −1 1/4
0 1/4 0
−5/4 0 −3/4


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– Vectors and matrices – Basic operations on matrices

Multiplication of matrices

Two matrices A and B can also be multiplied by each other if they
have matching dimensions: if A has dimension (n,m), B has to
have dimension (m, k). Their product C = A ·B will then have
dimension (n, k).

The element cij in the i-th
row and j-th column of C
is obtained by calculating
the scalar product of the
vector in the i-th row in A
with the vector in the j-th
column of B.
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– Vectors and matrices – Basic operations on matrices

Multiplication of matrices - Example

A ·B =

 1 4 −1
0 −1 0
5 0 3

 ·
 −1 0

2 −2
5 −2


=

 1 · (−1) + 4 · 2 + (−1) · 5 1 · 0 + 4 · (−2) + (−1) · (−2)
0 · (−1) + (−1) · 2 + 0 · 5 0 · 0 + (−1) · (−2) + 0 · (−2)
5 · (−1) + 0 · 2 + 3 · 5 5 · 0 + 0 · (−2) + 3 · (−2)


=

 2 −6
−2 2
10 −6


Online tool
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– Vectors and matrices – Matrices as linear functions

Matrices as linear functions

Given a matrix A of dimension (n,m), it defines a linear function
on the set of all m-dimensional vectors in the following way:

A(x) = A · x = y.

The output vector y is then of dimension n.
The elements of A have the following meaning: the j-th column in
A is the image A(ej) of the vector ej.

Example

(
−1 0
2 −2

)
·
(

1
0

)
=

(
−1
2

)
,

(
−1 0
2 −2

)
·
(

0
1

)
=

(
0
−2

)
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– Vectors and matrices – Matrices as linear functions

Examples

The following linear functions on vectors are essential for image
processing:

� Rotating: The following matrix describes a rotation by the
angle ϕ about the origin in counter-clockwise direction (in the
2-dimensional plane):(

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)

� Scaling: The following matrix describes a scaling by the factor
α (both in x− and in y-direction in the 2-dimensional plane):(

α 0
0 α

)
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