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Abstract

In the field of computational social choice, structure in
preferences is often described by so-called domain re-
strictions. Domain restrictions are of major importance
since they allow for the circumvention of Arrow’s para-
dox and for faster algorithms. On the other hand, such
structure might be disadvantageous if one seeks to pro-
tect voting mechanisms against manipulation and con-
trol with the help of computational complexity. So far, it
is unclear how likely it is that domain restrictions arise.
In this paper, we answer this question from a combina-
torial point of view. Our results show how unlikely it is
that a preference profile belongs to a restricted domain
if it is chosen at random under the Impartial Culture as-
sumption.

Introduction

Detecting and exploiting the structure of data is a major topic
in algorithmics and computer science in general. In compu-
tational social choice, the most prevalent form of data con-
sists of preferences. Structure in preference data has been
studied as domain restrictions, such as the single-peaked,
single-crossing or 2D single-peaked restriction. There are
three main reasons for studying domain restrictions:

Historically, the main motivation for studying domain re-
strictions was to find a way to escape Arrow’s paradox (Ar-
row 1950). For example, every single-peaked profile has a
Condorcet winner and thus allows for a voting system that
is non-dictatorial, Pareto efficient, and independent of irrel-
evant alternatives. More broadly speaking, voting systems
restricted to certain domains may have desirable properties
that do not hold in general.

By adopting the algorithmic viewpoint of computational
social choice, a second reason for studying domain restric-
tions becomes apparent: Restricting the domain of prefer-
ence data often allows for faster algorithms for computa-
tionally hard voting problems (Brandt et al. 2010; Betzler,
Slinko, and Uhlmann 2013; Walsh 2007). Computational
advantages can prevail even if the preference profiles are
only close to a certain domain restriction (Cornaz, Galand,
and Spanjaard 2013; Skowron et al. 2013). To be able to
speak about closeness, several notions of distance have been
proposed and studied in the literature (Faliszewski, Hemas-
paandra, and Hemaspaandra 2011; Elkind, Faliszewski, and
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Slinko 2012; Cornaz, Galand, and Spanjaard 2012; Erdélyi,
Lackner, and Pfandler 2013; Bredereck, Chen, and Woegin-
ger 2013a).

A third reason for studying domain restrictions is also re-
lated to their influence on computational complexity. A ma-
jor research topic in computational social choice is the use
of complexity to protect elections from manipulation, con-
trol and other forms of dishonest behavior. For an overview
of this research area we refer to the surveys by Faliszewski,
Hemaspaandra, and Hemaspaandra (2010) and Rothe and
Schend (2013). As domain restrictions tend to decrease the
complexity of voting problems, they have the undesirable
effect that, for example, manipulation and control become
computationally easier on restricted domains (Brandt et al.
2010; Faliszewski et al. 2011). To some degree, this problem
arises even if domain restrictions are relaxed by aforemen-
tioned notions of distance (Faliszewski, Hemaspaandra, and
Hemaspaandra 2011).

Despite the vast literature on domain restrictions, a funda-
mental question has not received much attention so far: How
likely is it that preference profiles lie in a restricted domain?

There are two experimental studies on that topic: Mat-
tei, Forshee, and Goldsmith (2012) report that in their
data sets almost no evidence for the single-peaked re-
striction was found. Similarly, Sui, Francois-Nienaber, and
Boutilier (2013) report also no occurences of the single-
peaked restriction in their data sets. However, they found
that these preferences are close to being 2D single-peaked.

Our work, in contrast, is of theoretical nature. We employ
combinatorial methods to study the likelihood of structure
in preference profiles. In this paper, likelihood is considered
with respect to the Impartial Culture assumption, where each
vote is equally likely to appear. While this is not a realistic
assumption for real-world preference data (cf. Popova, Re-
genwetter, and Mattei (2013)), the Impartial Culture is the
most basic distribution and thus it is generally used to obtain
baseline results. Our paper is the first extensive combinato-
rial analysis of domain restrictions. Its main contributions
are listed in the following.

e Many domain restrictions can be characterized by forbid-
den configurations: for example, the single-peaked domain
(Ballester and Haeringer 2011) and the single-crossing do-
main (Bredereck, Chen, and Woeginger 2013b). We prove
a close connection between configurations and permutations



(n,m) | SP(Ob) SP(ub) SC(ub) 2D (ub)
(10,5) | 8-107% 2-1077 1-107*  0.54
(25,5) | 2-1072L 8.1072! 3.107* 2.1072
(10,10) | 5-1073% 6-1073% 3.107'6 2.107°
(25,10) | 9-107%1 1-107%° 2.10787 9.10719
(50,10) | 5- 10787 6107187 9.107204 2.10~40

Figure 1: The likelihood that a random profile (assuming Im-
partial Culture) with n votes and m candidates is single-
peaked (SP), single-crossing (SC) and 2D single peaked
(2D). The table contains lower and upper bounds (Ib, ub).

n,m) | k SP SC 2D-SP
(n,m)
51 1-107% 3.107% 2.1079°
(25,10) | 10 | 2-107% 1.107%% 2.1073
15] 2-10726  9.10°10 -
10| 2-107188 1.10717 7.10722
(50,10) | 25 | 2-10776 2.10°7 2.107*
40| 6-1072%  3.10°6 -

Figure 2: Upper bounds on the likelihood that a random pro-
file (assuming Impartial Culture) with n votes and m can-
didates is single-peaked (SP), single-crossing (SC) and 2D
single peaked (2D) if k votes may be deleted.

patterns. This novel connection allows us to obtain a very
general result, showing that many domain restrictions char-
acterized by forbidden configurations are very unlikely to
appear in a random profile chosen according to the Impartial
Culture assumption. More precisely, while the total number
of profiles with n votes and m candidates is equal to (m!)™,
the number of profiles belonging to such a domain restric-
tion can be bounded by m/! - ¢ for some constant c.
e We perform a detailed combinatorial analysis of the
most commonly used domain restrictions: We study single-
peaked, single-crossing and 2D single-peaked profiles. For
all these restrictions, we prove upper bounds on the number
of domain restricted profiles. In particular, the upper bound
for single-peaked profiles is asymptotically tight. Our results
indicate that these domain restrictions are highly unlikely to
appear in random profiles chosen according to the Impartial
Culture assumption. This holds even for profiles with few
votes and candidates (cf. Table 1).
e In addition, we study the distance notions of voter dele-
tion and candidate deletion. Our results show that finding a
subset of votes belonging to a domain restriction is unlikely
as well: When optimally deleting k votes, the remaining pro-
file is still unlikely to be domain restricted (cf. Table 2), even
for rather large k. Similar results are obtained for candidate
deletion.
e For local candidate deletion we show a completely differ-
ent type of result: We determine how many candidates have
to be deleted at most per vote so that the remaining profile is
guaranteed to be single-peaked or 2D single-peaked.

Due to the space limitations most of the proofs had to be
omitted.

Preliminaries

Sets and orders. In our paper, two kinds of orders appear:
partial and total orders. Let S be a finite set. A partial order
of S is a binary relation that is reflexive, antisymmetric and
transitive. A total order of S is a partial order that is total,
i.e., for every a, b € S, either the pair (a,b) or (b, a) is con-
tained in the relation. Let P be a partial order of .S. Instead
of writing (a,b) € P, we write a <p bor b >p a. We write
a <p borb >p ato state that a <p b and a # b. Given
two subsets A and B of S, we write A >p B to denote
that every element in A is larger than every element in B
with respect to P. We write dom(P) to denote the domain
of P, ie., dom(P) = S. Given a set or tuple of partial or-
ders S, we use dom(S) to denote |J o g dom(P). Let T be
a total order on S. We write T'(7) to denote the i-th largest
element with respect to 7. We say that ¢ € S has rank ¢ in
T if T'(i) = a. A total order T is a linearization of a partial
order P if dom(T) = dom(P) and for all a,b € dom(P),
a <p bimplies a <7 b.

Permutations. A permutation 7 of a finite set .S is a bijective
function from S to S. We write 7~ for the inverse function
of 7. A permutation on the set {1,...,m} is called an m-
permutation. We shall write an m-permutation 7 as the se-
quence of values 7(1)7(2)...7(m). For example 7 = 321
is the permutation with 7(1) = 3,7(2) = 2 and 7(3) = 1.
Every pair (T, Tz) of total orders on a set with m elements
can be identified with the m-permutation p(T, ) := {i —
j : Ti(i)hasrank jinTo}. For Ty = b < a < c¢ and
T, = ¢ < a < b we have p(Ty,T5) = 321. Note that
p(TlaTQ) = p(TQaTl)il-

Profiles. An (n, m)-profile P is an n-tuple (V1,...,V,,) of
total orders of the candidate set {cy,...,cn}. The total or-
ders in a profile represent votes (or preferences). To eas-
ier distinguish between votes and other orders, we use <y
and >y to compare candidates with respect to a vote V. If
¢; <y c¢; holds, this means that candidate c; is preferred to
candidate ¢; in vote V. We write P[S] to denote P restricted
to S C dom(P). In the following, P always denotes a pro-
file.

Randomness. The two main probability distributions in so-
cial choice theory are the Impartial Culture (IC) and the Im-
partial Anonymous Culture (IAC) assumption. IC assumes
that votes are chosen uniformly at random from the set of
all possible votes. In contrast, IAC does not differentiate be-
tween profiles that can be obtained from one another by re-
arranging the list of votes. By this one obtains equivalence
classes of profiles. IAC assumes that each equivalence class
is equally likely. Thus, the number of distinct profiles un-
der IC is m!™ whereas the number of distinct profiles under
IAC is (mlt;”_l), the number of multisets with n elements
chosen from a base set of cardinality m/!. In our paper, when
we speak of a random profile, we always mean a profile ran-
domly chosen under the IC assumption.

Domain restrictions

The single-peaked restriction (Black 1948) is the most
widely used restriction. It assumes that the candidates can
be ordered linearly and voters prefer candidates close to their



ideal point to candidates that are further away.

Definition 1. Let A be a total order of dom(P), the so-
called axis. A vote V' € ‘P contains a valley with respect to A
on the candidates ¢y, co,c3 € dom(P) if c1 <a c2 <4 C3,
ca <y ¢y and ca <y cg holds. The profile P is single-
peaked with respect to A if for every V. € P and for all
candidates ¢y, ca,c3 € dom(P), V does not contain a val-
ley with respect to A on ¢y, ca, cs. The profile P is single-
peaked if there exists a total order A of dom(P) such that
P is single-peaked with respect to A.

The single-peaked restriction can be relaxed to a two-
dimensional setting (Barbera, Gul, and Stacchetti 1993), in
which valleys are less likely to arise.

Definition 2. Let A and B be total orders of dom(P), the
so-called axes. A vote V € P contains a 2D-valley with
respect to (A, B) on the candidates ¢y, co, c3 € dom(P) if
V' contains a (1D) valley with respect to A on c1,ca,c3 as
well as a valley with respect to B on ¢y, ca, cs. The profile P
is 2D single-peaked with respect to (A, B) if for every vote
V' € P and for all candidates ¢y, co,c3 € dom(P), V does
not contain a 2D-valley with respect to (A, B) on c1, 2, 3.
The profile P is 2D single-peaked if there exist two total
orders A, B of dom(P) such that P is 2D single-peaked
with respect to (A, B).

We continue with the single-crossing restriction (Roberts
1977), where the votes and not the candidates are ordered
along a linear axis.

Definition 3. Let A be a total order of {1,...,|P|}. The
profile P is single-crossing with respect to A if the set
{V € P|c1 <v ca} is an interval with respect to A for every
pair of candidates (c1, ca). The profile P is single-crossing
if there exists a total order A of {1,...,|P|} such that P is
single-crossing with respect to A.

We will now see that all these configurations share a prop-
erty: they are definable by a (possibly infinite) set of so-
called forbidden configurations. This unified view of domain
restrictions will allow us to prove a very general result about
domain restrictions in the next section.

Definition 4. (Configurations and containment) An (1, k)-
configuration C = (C4,...,C}) is an l-tuple of partial or-
ders over {x1,...,xy}. A profile P contains configuration
C if there exist an injective function f from C into P and
an injective function g from dom(C) into dom(P) such that,
Sor any x,y € dom(C) and C € C, it holds that x <¢ vy
implies g(x) <y 9(y). We use C C P as a shorthand
notation to denote that P contains C. A profile avoids a con-
figuration C if it does not contain C. In such a case we say
that P is C-restricted.

In Figure 3, we can see a (2, 4)-configuration that is con-
tained in a (3, 5)-profile.
Definition 5. (Configuration definable) Let I" be a set of
configurations. A set of profiles 11 is defined by I if II con-
sists exactly of those profiles that avoid all configurations in
I". We call 11 configuration definable if there exists a set of
configurations T which defines I1. If 11 is definable by a fi-
nite set of configurations, it is called finitely configuration
definable.

Profile P

f
B <A<®<6 [ e <@=e)

Cc3 <Cs <Cy <C <4

@<<@<A{; @<<<CB<@

Configuration C

g :T1 > Cy, Ty > C4, T3 > C5, Ty > C1

Figure 3: The configuration on the left-hand side is con-
tained in the profile on the right-hand side.

The sets of single-peaked (Ballester and Haeringer
2011) and single-crossing (Bredereck, Chen, and Woeginger
2013Db) profiles are known to be finitely configuration defin-
able. The following definition and proposition will allow us
to prove that many other domain restrictions, especially 2D
single-peakedness, are configuration definable as well.

Definition 6. A ser of profiles 11 is hereditary if for every
profile P’ it holds that P € Tl and P’ C P implies P’ € 11.

Proposition 1. A set of profiles is configuration definable if
and only if it is hereditary.

Proof. Let 1l be defined by I" and P € II. Assume towards a
contradiction that there exists a P’ C P with P’ ¢ II. Since
P € II, P avoids all configurations in I'. Since P’ C P,
P’ also avoids all configurations in I" and thus P’ € II — a
contradiction.

For the other direction we assume that for every profile
P € I1 it holds that P’ C P implies P’ € II. Let I1¢ denote
the set of all profiles that are not contained in II. It is easy to
observe that I1¢ is a (possibly infinite) set of configurations
that defines II. O

Corollary 2. The 2D single-peaked restriction is hereditary
and hence configuration definable.

It remains open whether this restriction is finitely config-
uration definable. Finite configuration definability has been
used for obtaining algorithms (Bredereck, Chen, and Woeg-
inger 2013a; Elkind and Lackner 2014). A natural example
of a meaningful restriction that is not configuration definable
is the set of all preference profiles that have a Condorcet
winner. The property of having a Condorcet winner is not
hereditary and thus cannot be defined by configurations. We
also note that there exist sets of profiles that are configura-
tion definable but not finitely configuration definable. The
proof of this statement builds upon the relation of permuta-
tion patterns and configurations but had to be omitted.

The connection to permutation patterns

In this section, we establish a strong link between the con-
cept of configuration containment in profiles and the con-
cept of pattern containment in permutations. We refer the
interested reader to Combinatorics of permutations (Béna
2004) which gives a very good overview of the field of pat-
tern avoidance in permutations. The central definition within
this field is the following:



Definition 7. A k-permutation m is contained as a pat-
tern in an n-permutation o, if there is a subsequence of
o that is order-isomorphic to w. In other words, w is
contained in o, if there is a strictly increasing map [ :
{1,...,k} — {1,...,n} so that the sequence u(mw) =
(u(m(1)), u(m(2)), ..., u(w(k))) is a subsequence of o.
This map p is called a matching of m into o. If there is no
such matching, o avoids the pattern 7.

For example, the pattern m = 132 is contained in 0 =
32514 since the subsequence 254 of o is order-isomorphic
to 7. However, the pattern 123 is avoided by o. Note that o
contains 7 if and only if 0~ contains 7!,

First we will need the following lemma that establishes
a link between configuration containment in profiles and
pattern containment in permutations. As of now, we shall
denote by Sy, (71, ...,m) the cardinality of the set of m-

permutations that avoid the permutations 7y, . . ., 7.

Lemma 3. Let C = (C1, Cs) be a configuration containing
two total orders and m a positive integer. Furthermore, let
Vi be a vote on m candidates. Then the number of votes V5
such that P = (V4,Va) avoids C is equal to Sy, (m, 7~ 1),
where m = p(Cy, Cs).

From this lemma follows a very general result that is ap-
plicable to any set of configurations that contains at least one
configuration of cardinality two.

Theorem 4. Let a(n, m,I") be the number of (n, m)-profiles
avoiding a set of configurations I. Let k > 2. If a set of con-
figurations I" contains a (2, k)-configuration C = (C1, Cs),
then it holds for all n,m € N that a(n,m,T') < m! -

c,(cnfl)m, where cy, is a constant depending only on k.

This result shows that forbidding any (2, k)-configuration
is a very strong restriction on preference profiles. Indeed,
m! - c,(C"_l)m is very small compared to the total number of
(n,m)-profiles which is (m!)™.

Proof. Without loss of generality we can assume that C con-
sists of two total orders. Indeed, if C consists of partial or-
ders, we can simply choose any linearization C; of C; and
Cy of C and take C = (C, C2) instead of C. Then it clearly
holds that a(n, m, {C}) < a(n,m,{C}).

Let us start by choosing the first vote V; of the profile at
random. For this there are m! possibilities. When choosing
the remaining (n — 1) votes V5, ..., V,,, we have to make
sure that no selection of two votes contains the forbidden
configuration C. If we relax this condition and only demand
that none of the pairs (V4,V;) for ¢ # 1 contain the for-
bidden configuration, we clearly obtain an upper bound for
a(n, m,{C}). Now Lemma 3 tells us that there are — under
this relaxed condition — S,,, (7,7~ 1) choices for every V;
where 7 := p(C4, Cs). Thus we have the following upper
bound:

a(n,m,{C}) < m!Sm(ﬂ',Wfl)"fl < m!Sm(ﬂ')"fl, (1)

where the second inequality follows since all permutations
avoiding both 7 and 7~ clearly avoid 7.

Now we apply the famous Marcus-Tardos theorem (Mar-
cus and Tardos 2004): For every permutation 7 of length k

there exists a constant ¢ such that for all positive integers
m we have S,,,(7) < ¢,™. Putting this together with Equa-
tion (1) and noting that a(n, m, {C}) is an upper bound for
a(n, m,T) we obtain the desired upper bound. O

The proof of the Marcus-Tardos theorem provides an ex-
plicit exponential formula for the constants cg, but these
constants are far from being optimal. There is an ongoing
effort to find exact formulas for S, (7) with fixed 7.

Let us discuss the implications of this theorem. It is ap-
plicable to all (not necessarily finite) configuration definable
domain restrictions that contain a configuration of cardinal-
ity two. This includes the single-peaked restriction as well
as the 1D Euclidean (Coombs 1964; Knoblauch 2010) and
group separable (Ballester and Haeringer 2011) restrictions.
In the next section, we prove a better bound for the single-
peaked restriction that is even asymptotically optimal.

Combinatorial Results for Domain
Restrictions

In this section, we present our combinatorial results on the
number of profiles avoiding a set of configurations. We shall
always denote by a(n, m, D) the number of (n, m)-profiles
belonging to the domain restriction D. In the following we
derive upper bounds for a(n, m, D) where D is one of the
following domain restrictions: single-peaked (SP), single-
crossing (SC') or 2D single-peaked (2D). From our results
it is easy to derive bounds on the probability that a random
(n, m)-profile is within one of the mentioned domain re-
strictions. This is simply a(n, m,I")/m!™, where m!™ is the
total number of (n, m)-profiles.

Theorem 5. For n,m > 2 it holds that

! !
%.2(m—1)-7l.(1_€(n7m>) < a(n,m, SP) < %.Q(m—l)m’
where e(n,m) — 0 for every fixed m and n — oc.

Proof. First observe that a profile is single-peaked with re-
spect to an axis if and only if it is single-peaked with respect
to its reverse, i.e., the axis read from right to left. Thus the
total number of axes on m candidates that need to be con-
sidered is m!/2. Second, as shown by Escoffier, Lang, and
Oztiirk (2008), the number of votes that are single-peaked
with respect to a given axis is 2™ 1.

For every one of the m!/2 axes considered, select an n-
tuple of votes from the 2™~! votes that are single-peaked
with respect to this axis. There are exactly 20™—1™ guch
possibilities, which yields the upper bound.

Let us turn to the lower bound. Given a vote V, there are
only two axes with respect to which both V" and its reverse
V' are single-peaked, namely V" and V' themselves. Thus the
presence of the votes V' and V' in a profile forces the axis to
be equal to either V' or V. If we fix a vote V, the number
of single-peaked profiles containing both V' and V' can thus
be determined exactly. Multiplying this by the number of
possible choices for V' leads to:

25 () () e

1<i,g
i+j<n



where 7 is the number of times the vote V' appears in the pro-
file and j the number of times the vote V' appears. The other
votes may be any of the 2! — 2 remaining votes that are
single-peaked with respect to the axis V and n—i—j of them
must be chosen. By simple manipulations of equation (2)
we obtain the lower bound 2™~V . (1 — ¢(n, m)) where
e(n,m) = (2- (2™t —1)" - (2m~t —2)") j2(m=Dn,
As can easily be seen, e(n,m) tends to 0 for every fixed
m and n — oo. O

The proof for the upper bound on the number of single-
crossing and 2D single-peaked profiles had to be omitted.

Theorem 6. If n,m > 2 it holds that a(n, m, SC) <

(0 + (3)t ! )

1752 (20 + 1)m—1-

. m-(m—1)/2
< min (n!m!n ( )/ ,

Theorem 7. For m > 4 and m > 2 it holds that

g\ L% ] m-11  \"

=1

Distances to Domain Restrictions

As mentioned in the introduction, domain restrictions are
often too restrictive to describe real-world preference data.
Notions of distance make domain restrictions more flexible.
Here, we study three distances. The first is voter deletion (or
Maverick) (Faliszewski, Hemaspaandra, and Hemaspaandra
2011) which is the number of voters that have to be removed
from a profile for it to belong to a restricted domain. The sec-
ond one is candidate deletion (Escoffier, Lang, and Oztiirk
2008), where candidates instead of voters are removed from
the domain of the profile. The third is local candidate dele-
tion (Erdélyi, Lackner, and Pfandler 2013). Here we ask for
the number of candidates that have to be removed per vote
such that the corresponding (partial) profile belongs to a cer-
tain domain restriction.

We start with two upper bounds that are applicable to ar-
bitrary domain restrictions.

Theorem 8. Let v(n, m, k, ') denote the number of profiles
that have a voter deletion distance of at most k to the set
of (n, m)-profiles avoiding T. It holds that v(n,m, k,T) <

(Z) ~(mY* - a(n —k,m,T).

Theorem 9. Let c(n, m, k,T") denote the number of profiles
that have a candidate deletion distance of at most k to the
set of (n, m)-profiles avoiding T. It holds that

c(n,m,k,r)g( m! )>n-a(n,m—k5,1‘).

(m — k!

The next theorem tells us how many local candidate dele-
tions are needed at most to make a profile single-peaked.

Theorem 10. Let u be a positive integer such that m >
u- (u—1)/2 4 1. For every axis A and every vote V on m
candidates there is a subset S C dom(V) of size at least u
such that V'[S] is single-peaked with respect to A.

m |3 4 5 6 7 8 9 10 11 12
SP|1 1 2 3 3 4 5 6 6 17
2D 0 0 1 1 2 2 3 4 4 5

Table 1: Maximal number of candidates that have to be
deleted per vote in order to make an arbitrary profile with
m candidates (2D) single-peaked.

This theorem is a refinement of the famous Erd&s-
Szekeres theorem which states that every sequence of length
atleast (r—1)(s—1)+ 1 contains a subsequence of length r
that is monotonically increasing or a subsequence of length
s that is monotonically decreasing. Our result implies that
at most [m — 1 (v/8m — 7 + 1) | candidates have to be lo-
cally deleted in an (n, m)-profile to make it single-peaked.

This theorem can be extended to 2D single-peaked with
the help of the following result:

Proposition 11. Let P be a profile. If there exist disjoint sets
C1, Co with C1 U Cy = dom(P) such that P[C1) as well as
P|Cs5] are single-peaked then P is 2D single-peaked.

We can use Theorem 10 and Proposition 11 to compute
the maximum local candidate deletion distance of any pro-
file with m candidates to the (2D) single-peaked restric-
tion. The results for profiles with few candidates are ex-
emplarily shown in Table 1. In the experimental study of
Sui, Francois-Nienaber, and Boutilier (2013) they find that a
(3800, 9)-profile is 3-Local Candidate Deletion 2D Single-
Peaked. Our results show that this is necessarily the case for
every profile with 9 candidates (cf. Table 1).

Conclusions

At a first glance, our results seem to have a negative flavor
since they show that random profiles are unlikely to belong
to a restricted domain. However, this can also be interpreted
in a positive way: If structure is found in a profile, this is
almost certainly not the mere product of chance. For exam-
ple, Sui, Francois-Nienaber, and Boutilier (2013) studied a
(3800, 9)-profile that contained a subset of 2498 votes which
were 2D single-peaked. Our results show that the probability
of such an event is less than 7.4 - 1075, Thus, it can be con-
cluded that this structure is very unlikely to occur randomly.

Another positive aspect is in relation to manipulation and
control. Although domain restrictions break the complexity
barrier against undesired attacks, our results lead to the con-
clusion that even a small amount of randomness in a profile
can yield protection.

We would like to mention one specific application of our
paper. We provide means to compute the maximal amount
of noise in a preference profile (e.g. uninformed or disin-
terested voters) such that there is still a reasonable chance
for structure. While IC is not realistic for real-world prefer-
ence profiles, we believe it is appropriate to model this kind
of noise. Our results rigorously show how fragile notions
of domain restrictions really are. This is relevant informa-
tion since many algorithmic results in computational social
choice assume restricted domains.



Let us conclude with directions for future research. First
and foremost, our result have to be extended to other, more
realistic probability distributions. We hope that our results
may serve as a starting point for such investigations. It would
also be interesting to complement our upper bound results
with corresponding lower bounds, both for domain restric-
tions as well as for notions of distance. This would allow
us to compute the guaranteed maximal distance to each do-
main restriction, similar to our results for the local candidate
deletion distance.

Finally, the connection between configurations in profiles
and patterns in permutations established in this paper can-
not only be used to derive combinatorial results but also for
algorithmic advances. Indeed, as preliminary studies of the
authors show, this connection can be used to show that the
CONFIGUARTION CONTAINMENT problem, asking whether
a configuration C is contained in a profile P, is NP-complete
even if [P| = 2 and |C| = 2. It seems promising to adapt
algorithms from permutation pattern matching to the CON-
FIGUARTION CONTAINMENT problem, possibly yielding al-
gorithms for structure detection in preferences that are not
tailored to a single domain restriction.
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